r"""
Flatten a vector, matrix, or cartesian product of those things
into a long list.
+
+ EXAMPLES::
+
+ sage: from mjo.eja.eja_utils import _all2list
+ sage: V1 = VectorSpace(QQ,2)
+ sage: V2 = MatrixSpace(QQ,2)
+ sage: x1 = V1([1,1])
+ sage: x2 = V1([1,-1])
+ sage: y1 = V2.one()
+ sage: y2 = V2([0,1,1,0])
+ sage: _all2list((x1,y1))
+ [1, 1, 1, 0, 0, 1]
+ sage: _all2list((x2,y2))
+ [1, -1, 0, 1, 1, 0]
+ sage: M = cartesian_product([V1,V2])
+ sage: _all2list(M((x1,y1)))
+ [1, 1, 1, 0, 0, 1]
+ sage: _all2list(M((x2,y2)))
+ [1, -1, 0, 1, 1, 0]
+
"""
if hasattr(x, 'list'):
# Easy case...
[0 0], [1/2*sqrt(2) 0], [0 1]
]
+ It even works on Cartesian product spaces whose factors are vector
+ or matrix spaces::
+
+ sage: V1 = VectorSpace(AA,2)
+ sage: V2 = MatrixSpace(AA,2)
+ sage: M = cartesian_product([V1,V2])
+ sage: x1 = V1([1,1])
+ sage: x2 = V1([1,-1])
+ sage: y1 = V2.one()
+ sage: y2 = V2([0,1,1,0])
+ sage: z1 = M((x1,y1))
+ sage: z2 = M((x2,y2))
+ sage: def ip(a,b):
+ ....: return a[0].inner_product(b[0]) + (a[1]*b[1]).trace()
+ sage: U = gram_schmidt([z1,z2], inner_product=ip)
+ sage: ip(U[0],U[1])
+ 0
+ sage: ip(U[0],U[0])
+ 1
+ sage: ip(U[1],U[1])
+ 1
+
TESTS:
Ensure that zero vectors don't get in the way::
sage: v = [v1,v2,v3]
sage: len(gram_schmidt(v)) == 2
True
-
"""
if inner_product is None:
inner_product = lambda x,y: x.inner_product(y)