EXAMPLES:
- The trivial cone in a trivial space has no positive operators::
-
- sage: K = Cone([], ToricLattice(0))
- sage: positive_operator_gens(K)
- []
-
Positive operators on the nonnegative orthant are nonnegative matrices::
sage: K = Cone([(1,)])
[0 0], [0 0], [1 0], [0 1]
]
+ The trivial cone in a trivial space has no positive operators::
+
+ sage: K = Cone([], ToricLattice(0))
+ sage: positive_operator_gens(K)
+ []
+
+ Every operator is positive on the trivial cone::
+
+ sage: K = Cone([(0,)])
+ sage: positive_operator_gens(K)
+ [[1], [-1]]
+
+ sage: K = Cone([(0,0)])
+ sage: K.is_trivial()
+ True
+ sage: positive_operator_gens(K)
+ [
+ [1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0]
+ [0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
+ ]
+
Every operator is positive on the ambient vector space::
sage: K = Cone([(1,),(-1,)])
[0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
]
+ A non-obvious application is to find the positive operators on the
+ right half-plane::
+
+ sage: K = Cone([(1,0),(0,1),(0,-1)])
+ sage: positive_operator_gens(K)
+ [
+ [1 0] [0 0] [ 0 0] [0 0] [ 0 0]
+ [0 0], [1 0], [-1 0], [0 1], [ 0 -1]
+ ]
+
TESTS:
Each positive operator generator should send the generators of the