from mjo.eja.eja_utils import _mat2vec
class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
-
+ r"""
+ The lowest-level class for representing a Euclidean Jordan algebra.
+ """
def _coerce_map_from_base_ring(self):
"""
Disable the map from the base ring into the algebra.
def __init__(self,
field,
- mult_table,
+ multiplication_table,
+ inner_product_table,
prefix='e',
category=None,
matrix_basis=None,
check_field=True,
check_axioms=True):
"""
+ INPUT:
+
+ * field -- the scalar field for this algebra (must be real)
+
+ * multiplication_table -- the multiplication table for this
+ algebra's implicit basis. Only the lower-triangular portion
+ of the table is used, since the multiplication is assumed
+ to be commutative.
+
SETUP::
sage: from mjo.eja.eja_algebra import (
sage: x*y == y*x
True
+ An error is raised if the Jordan product is not commutative::
+
+ sage: JP = ((1,2),(0,0))
+ sage: IP = ((1,0),(0,1))
+ sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
+ Traceback (most recent call last):
+ ...
+ ValueError: Jordan product is not commutative
+
+ An error is raised if the inner-product is not commutative::
+
+ sage: JP = ((1,0),(0,1))
+ sage: IP = ((1,2),(0,0))
+ sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
+ Traceback (most recent call last):
+ ...
+ ValueError: inner-product is not commutative
+
TESTS:
The ``field`` we're given must be real with ``check_field=True``::
The multiplication table must be square with ``check_axioms=True``::
- sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()))
+ sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()),((1,),))
Traceback (most recent call last):
...
ValueError: multiplication table is not square
+ The multiplication and inner-product tables must be the same
+ size (and in particular, the inner-product table must also be
+ square) with ``check_axioms=True``::
+
+ sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),(()))
+ Traceback (most recent call last):
+ ...
+ ValueError: multiplication and inner-product tables are
+ different sizes
+ sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),((1,2),))
+ Traceback (most recent call last):
+ ...
+ ValueError: multiplication and inner-product tables are
+ different sizes
+
"""
if check_field:
if not field.is_subring(RR):
# we've specified a real embedding.
raise ValueError("scalar field is not real")
- # The multiplication table had better be square
- n = len(mult_table)
+
+ # The multiplication and inner-product tables should be square
+ # if the user wants us to verify them. And we verify them as
+ # soon as possible, because we want to exploit their symmetry.
+ n = len(multiplication_table)
if check_axioms:
- if not all( len(l) == n for l in mult_table ):
+ if not all( len(l) == n for l in multiplication_table ):
raise ValueError("multiplication table is not square")
+ # If the multiplication table is square, we can check if
+ # the inner-product table is square by comparing it to the
+ # multiplication table's dimensions.
+ msg = "multiplication and inner-product tables are different sizes"
+ if not len(inner_product_table) == n:
+ raise ValueError(msg)
+
+ if not all( len(l) == n for l in inner_product_table ):
+ raise ValueError(msg)
+
+ if not all( multiplication_table[j][i]
+ == multiplication_table[i][j]
+ for i in range(n)
+ for j in range(i+1) ):
+ raise ValueError("Jordan product is not commutative")
+ if not all( inner_product_table[j][i]
+ == inner_product_table[i][j]
+ for i in range(n)
+ for j in range(i+1) ):
+ raise ValueError("inner-product is not commutative")
self._matrix_basis = matrix_basis
if category is None:
# long run to have the multiplication table be in terms of
# algebra elements. We do this after calling the superclass
# constructor so that from_vector() knows what to do.
+ #
+ # Note: we take advantage of symmetry here, and only store
+ # the lower-triangular portion of the table.
self._multiplication_table = [ [ self.vector_space().zero()
- for i in range(n) ]
- for j in range(n) ]
- # take advantage of symmetry
+ for j in range(i+1) ]
+ for i in range(n) ]
+
for i in range(n):
for j in range(i+1):
- elt = self.from_vector(mult_table[i][j])
+ elt = self.from_vector(multiplication_table[i][j])
self._multiplication_table[i][j] = elt
- self._multiplication_table[j][i] = elt
+
+ # Save our inner product as a matrix, since the efficiency of
+ # matrix multiplication will usually outweigh the fact that we
+ # have to store a redundant upper- or lower-triangular part.
+ # Pre-cache the fact that these are Hermitian (real symmetric,
+ # in fact) in case some e.g. matrix multiplication routine can
+ # take advantage of it.
+ self._inner_product_matrix = matrix(field, inner_product_table)
+ self._inner_product_matrix._cache = {'hermitian': False}
if check_axioms:
- if not self._is_commutative():
- raise ValueError("algebra is not commutative")
if not self._is_jordanian():
raise ValueError("Jordan identity does not hold")
if not self._inner_product_is_associative():
return fmt.format(self.dimension(), self.base_ring())
def product_on_basis(self, i, j):
- return self._multiplication_table[i][j]
+ # We only stored the lower-triangular portion of the
+ # multiplication table.
+ if j <= i:
+ return self._multiplication_table[i][j]
+ else:
+ return self._multiplication_table[j][i]
def _is_commutative(self):
r"""
+----++----+----+----+----+
"""
- M = list(self._multiplication_table) # copy
- for i in range(len(M)):
- # M had better be "square"
+ n = self.dimension()
+ M = [ [ self.zero() for j in range(n) ]
+ for i in range(n) ]
+ for i in range(n):
+ for j in range(i+1):
+ M[i][j] = self._multiplication_table[i][j]
+ M[j][i] = M[i][j]
+
+ for i in range(n):
+ # Prepend the left "header" column entry Can't do this in
+ # the loop because it messes up the symmetry.
M[i] = [self.monomial(i)] + M[i]
+
+ # Prepend the header row.
M = [["*"] + list(self.gens())] + M
return table(M, header_row=True, header_column=True, frame=True)
Element = FiniteDimensionalEuclideanJordanAlgebraElement
class RationalBasisEuclideanJordanAlgebraNg(FiniteDimensionalEuclideanJordanAlgebra):
+ r"""
+ New class for algebras whose supplied basis elements have all rational entries.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import BilinearFormEJA
+
+ EXAMPLES:
+
+ The supplied basis is orthonormalized by default::
+
+ sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
+ sage: J = BilinearFormEJA(B)
+ sage: J.matrix_basis()
+ (
+ [1] [ 0] [ 0]
+ [0] [1/5] [32/5]
+ [0], [ 0], [ 5]
+ )
+
+ """
def __init__(self,
field,
basis,
V = VectorSpace(field, degree)
- # Compute this from "Q" (obtained from Gram-Schmidt) below as
- # R = Q.solve_right(A), where the rows of "Q" are the
- # orthonormalized vector_basis and and the rows of "A" are the
- # original vector_basis.
- self._deorthonormalization_matrix = None
+ # If we were asked to orthonormalize, and if the orthonormal
+ # basis is different from the given one, then we also want to
+ # compute multiplication and inner-product tables for the
+ # deorthonormalized basis. These can be used later to
+ # construct a deorthonormalized copy of this algebra over QQ
+ # in which several operations are much faster.
+ self._deortho_multiplication_table = None
+ self._deortho_inner_product_table = None
if orthonormalize:
from mjo.eja.eja_utils import gram_schmidt
- A = matrix(field, vector_basis)
vector_basis = gram_schmidt(vector_basis, inner_product)
W = V.span_of_basis( vector_basis )
- Q = matrix(field, vector_basis)
- # A = QR <==> A.T == R.T*Q.T
- # So, Q.solve_right() is equivalent to the Q.T.solve_left()
- # that we want.
- self._deorthonormalization_matrix = Q.solve_right(A)
+
+ # Normalize the "matrix" basis, too!
+ basis = vector_basis
if basis_is_matrices:
from mjo.eja.eja_utils import _vec2mat
- basis = tuple( map(_vec2mat,vector_basis) )
+ basis = tuple( map(_vec2mat,basis) )
W = V.span_of_basis( vector_basis )
ip_table[i][j] = ip
ip_table[j][i] = ip
- self._inner_product_matrix = matrix(field,ip_table)
-
if basis_is_matrices:
for m in basis:
m.set_immutable()
super().__init__(field,
mult_table,
+ ip_table,
prefix,
category,
basis, # matrix basis
W = V.span_of_basis( _mat2vec(s) for s in basis )
mult_table = [[W.zero() for j in range(algebra_dim)]
for i in range(algebra_dim)]
- ip_table = [[W.zero() for j in range(algebra_dim)]
+ ip_table = [[field.zero() for j in range(algebra_dim)]
for i in range(algebra_dim)]
for i in range(algebra_dim):
for j in range(algebra_dim):
except:
pass
- try:
- # HACK PART DEUX
- self._inner_product_matrix = matrix(field,ip_table)
- except:
- pass
-
super(MatrixEuclideanJordanAlgebra, self).__init__(field,
mult_table,
+ ip_table,
matrix_basis=basis,
**kwargs)
We can check the multiplication condition given in the Jordan, von
Neumann, and Wigner paper (and also discussed on my "On the
symmetry..." paper). Note that this relies heavily on the standard
- choice of basis, as does anything utilizing the bilinear form matrix::
+ choice of basis, as does anything utilizing the bilinear form
+ matrix. We opt not to orthonormalize the basis, because if we
+ did, we would have to normalize the `s_{i}` in a similar manner::
sage: set_random_seed()
sage: n = ZZ.random_element(5)
sage: B22 = M.transpose()*M
sage: B = block_matrix(2,2,[ [B11,0 ],
....: [0, B22 ] ])
- sage: J = BilinearFormEJA(B)
+ sage: J = BilinearFormEJA(B, orthonormalize=False)
sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
sage: V = J.vector_space()
- sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
+ sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
....: for ei in eis ]
sage: actual = [ sis[i]*sis[j]
....: for i in range(n-1)
"""
def __init__(self, field=AA, **kwargs):
mult_table = []
- self._inner_product_matrix = matrix(field,0)
+ ip_table = []
super(TrivialEJA, self).__init__(field,
mult_table,
+ ip_table,
check_axioms=False,
**kwargs)
# The rank is zero using my definition, namely the dimension of the
p = (J2.monomial(i)*J2.monomial(j)).to_vector()
mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
+ # TODO: build the IP table here from the two constituent IP
+ # matrices (it'll be block diagonal, I think).
+ ip_table = None
super(DirectSumEJA, self).__init__(field,
mult_table,
+ ip_table,
check_axioms=False,
**kwargs)
self.rank.set_cache(J1.rank() + J2.rank())