REFERENCES:
+ .. [GourionSeeger] Daniel Gourion and Alberto Seeger.
+ Critical angles in polyhedral convex cones: numerical and
+ statistical considerations. Mathematical Programming, 123:173-198,
+ 2010, doi:10.1007/s10107-009-0317-2.
+
.. [IusemSeegerOnPairs] Alfredo Iusem and Alberto Seeger.
On pairs of vectors achieving the maximal angle of a convex cone.
Mathematical Programming, 104(2-3):501-523, 2005,
sage: abs(actual - expected).n() < 1e-12
True
+ The dual of the Schur cone is the "downward monotonic cone"
+ [GourionSeeger]_, whose elements' entries are in non-increasing
+ order::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(10)
+ sage: K = schur_cone(n).dual()
+ sage: x = K.random_element()
+ sage: all( x[i] >= x[i+1] for i in xrange(n-1) )
+ True
+
TESTS:
We get the trivial cone when ``n`` is zero::