return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
-class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
+class JordanSpinEJA(BilinearFormEJA):
"""
The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
with the usual inner product and jordan product ``x*y =
sage: JordanSpinEJA(2, prefix='B').gens()
(B0, B1)
- """
- def __init__(self, n, field=QQ, **kwargs):
- V = VectorSpace(field, n)
- mult_table = [[V.zero() for j in range(n)] for i in range(n)]
- for i in range(n):
- for j in range(n):
- x = V.gen(i)
- y = V.gen(j)
- x0 = x[0]
- xbar = x[1:]
- y0 = y[0]
- ybar = y[1:]
- # z = x*y
- z0 = x.inner_product(y)
- zbar = y0*xbar + x0*ybar
- z = V([z0] + zbar.list())
- mult_table[i][j] = z
-
- # The rank of the spin algebra is two, unless we're in a
- # one-dimensional ambient space (because the rank is bounded by
- # the ambient dimension).
- fdeja = super(JordanSpinEJA, self)
- return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs)
-
- def inner_product(self, x, y):
- """
- Faster to reimplement than to use natural representations.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import JordanSpinEJA
-
- TESTS:
+ TESTS:
- Ensure that this is the usual inner product for the algebras
- over `R^n`::
+ Ensure that we have the usual inner product on `R^n`::
sage: set_random_seed()
sage: J = JordanSpinEJA.random_instance()
sage: x.inner_product(y) == J.natural_inner_product(X,Y)
True
- """
- return x.to_vector().inner_product(y.to_vector())
+ """
+ def __init__(self, n, field=QQ, **kwargs):
+ # This is a special case of the BilinearFormEJA with the identity
+ # matrix as its bilinear form.
+ return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):