cone into the cone::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5)
+ sage: K = random_cone(max_ambient_dim=4)
sage: pi_of_K = positive_operator_gens(K)
sage: all([ K.contains(P*x) for P in pi_of_K for x in K ])
True
cone into the cone::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5)
+ sage: K = random_cone(max_ambient_dim=4)
sage: pi_of_K = positive_operator_gens(K)
sage: all([ K.contains(P*K.random_element(QQ)) for P in pi_of_K ])
True
generators of the cone into the cone::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5)
+ sage: K = random_cone(max_ambient_dim=4)
sage: pi_of_K = positive_operator_gens(K)
sage: L = ToricLattice(K.lattice_dim()**2)
sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L)
element of the cone into the cone::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5)
+ sage: K = random_cone(max_ambient_dim=4)
sage: pi_of_K = positive_operator_gens(K)
sage: L = ToricLattice(K.lattice_dim()**2)
sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L)
can be computed from the lineality spaces of the cone and its dual::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5)
+ sage: K = random_cone(max_ambient_dim=4)
sage: pi_of_K = positive_operator_gens(K)
sage: L = ToricLattice(K.lattice_dim()**2)
sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L)
is known from its lineality space::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5)
+ sage: K = random_cone(max_ambient_dim=4)
sage: n = K.lattice_dim()
sage: m = K.dim()
sage: l = K.lineality()
corollary in my paper::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5)
+ sage: K = random_cone(max_ambient_dim=4)
sage: n = K.lattice_dim()
sage: m = K.dim()
sage: l = K.lineality()
description of its generators::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5)
+ sage: K = random_cone(max_ambient_dim=4)
sage: n = K.lattice_dim()
sage: pi_of_K = positive_operator_gens(K)
sage: L = ToricLattice(n**2)
is proper::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5)
+ sage: K = random_cone(max_ambient_dim=4)
sage: pi_of_K = positive_operator_gens(K)
sage: L = ToricLattice(K.lattice_dim()**2)
sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
The Z-property is possessed by every Z-transformation::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=6)
+ sage: K = random_cone(max_ambient_dim=4)
sage: Z_of_K = Z_transformation_gens(K)
sage: dcs = K.discrete_complementarity_set()
sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
The lineality space of Z is LL::
sage: set_random_seed()
- sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
+ sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=4)
sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
sage: z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ])
sage: z_cone.linear_subspace() == lls
And thus, the lineality of Z is the Lyapunov rank::
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=6)
+ sage: K = random_cone(max_ambient_dim=4)
sage: Z_of_K = Z_transformation_gens(K)
sage: L = ToricLattice(K.lattice_dim()**2)
sage: z_cone = Cone([ z.list() for z in Z_of_K ], lattice=L)
The lineality spaces of pi-star and Z-star are equal:
sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5)
+ sage: K = random_cone(max_ambient_dim=4)
sage: pi_of_K = positive_operator_gens(K)
sage: Z_of_K = Z_transformation_gens(K)
sage: L = ToricLattice(K.lattice_dim()**2)