]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
Use max_ambient_dim=4 for the pi/Z stuff, things get too slow at n=5.
authorMichael Orlitzky <michael@orlitzky.com>
Fri, 8 Jan 2016 05:55:08 +0000 (00:55 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Fri, 8 Jan 2016 05:55:08 +0000 (00:55 -0500)
mjo/cone/cone.py

index 8790c30673a25af96c29bf22ff9e84458516da09..d0b5b6fc494d5b1dff88266a2b17883c77578952 100644 (file)
@@ -246,7 +246,7 @@ def positive_operator_gens(K):
     cone into the cone::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
         sage: all([ K.contains(P*x) for P in pi_of_K for x in K ])
         True
@@ -255,7 +255,7 @@ def positive_operator_gens(K):
     cone into the cone::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
         sage: all([ K.contains(P*K.random_element(QQ)) for P in pi_of_K ])
         True
@@ -264,7 +264,7 @@ def positive_operator_gens(K):
     generators of the cone into the cone::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
         sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L)
@@ -276,7 +276,7 @@ def positive_operator_gens(K):
     element of the cone into the cone::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
         sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L)
@@ -288,7 +288,7 @@ def positive_operator_gens(K):
     can be computed from the lineality spaces of the cone and its dual::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
         sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L)
@@ -307,7 +307,7 @@ def positive_operator_gens(K):
     is known from its lineality space::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: n = K.lattice_dim()
         sage: m = K.dim()
         sage: l = K.lineality()
@@ -323,7 +323,7 @@ def positive_operator_gens(K):
     corollary in my paper::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: n = K.lattice_dim()
         sage: m = K.dim()
         sage: l = K.lineality()
@@ -363,7 +363,7 @@ def positive_operator_gens(K):
     description of its generators::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: n = K.lattice_dim()
         sage: pi_of_K = positive_operator_gens(K)
         sage: L = ToricLattice(n**2)
@@ -401,7 +401,7 @@ def positive_operator_gens(K):
     is proper::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
         sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
@@ -485,7 +485,7 @@ def Z_transformation_gens(K):
     The Z-property is possessed by every Z-transformation::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=6)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: Z_of_K = Z_transformation_gens(K)
         sage: dcs = K.discrete_complementarity_set()
         sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
@@ -495,7 +495,7 @@ def Z_transformation_gens(K):
     The lineality space of Z is LL::
 
         sage: set_random_seed()
-        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
+        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=4)
         sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
         sage: z_cone  = Cone([ z.list() for z in Z_transformation_gens(K) ])
         sage: z_cone.linear_subspace() == lls
@@ -504,7 +504,7 @@ def Z_transformation_gens(K):
     And thus, the lineality of Z is the Lyapunov rank::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=6)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: Z_of_K = Z_transformation_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
         sage: z_cone  = Cone([ z.list() for z in Z_of_K ], lattice=L)
@@ -514,7 +514,7 @@ def Z_transformation_gens(K):
     The lineality spaces of pi-star and Z-star are equal:
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
         sage: Z_of_K = Z_transformation_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)