+def is_admissible_extreme_rank(r, n):
+ """
+ The extreme matrices of the doubly-nonnegative cone have some
+ restrictions on their ranks. This function checks to see whether the
+ rank ``r`` would be an admissible rank for an ``n``-by-``n`` matrix.
+
+ INPUT:
+
+ - ``r`` - The rank of the matrix.
+
+ - ``n`` - The dimension of the vector space on which the matrix acts.
+
+ OUTPUT:
+
+ Either ``True`` if a rank ``r`` matrix could be an extreme vector of
+ the doubly-nonnegative cone in `$\mathbb{R}^{n}$`, or ``False``
+ otherwise.
+
+ EXAMPLES:
+
+ For dimension 5, only ranks zero, one, and three are admissible::
+
+ sage: is_admissible_extreme_rank(0,5)
+ True
+ sage: is_admissible_extreme_rank(1,5)
+ True
+ sage: is_admissible_extreme_rank(2,5)
+ False
+ sage: is_admissible_extreme_rank(3,5)
+ True
+ sage: is_admissible_extreme_rank(4,5)
+ False
+ sage: is_admissible_extreme_rank(5,5)
+ False
+
+ When given an impossible rank, we just return false::
+
+ sage: is_admissible_extreme_rank(100,5)
+ False
+
+ """
+ if r == 0:
+ # Zero is in the doubly-nonnegative cone.
+ return True
+
+ if r > n:
+ # Impossible, just return False
+ return False
+
+ # See Theorem 3.1 in the cited reference.
+ if r == 2:
+ return False
+
+ if n.mod(2) == 0:
+ # n is even
+ return r <= max(1, n-3)
+ else:
+ # n is odd
+ return r <= max(1, n-2)
+
+
def has_admissible_extreme_rank(A):
"""
The extreme matrices of the doubly-nonnegative cone have some
The zero matrix has rank zero, which is admissible::
- sage: A = zero_matrix(QQ, 5, 5)
- sage: has_admissible_extreme_rank(A)
- True
+ sage: A = zero_matrix(QQ, 5, 5)
+ sage: has_admissible_extreme_rank(A)
+ True
+
+ Likewise, rank one is admissible for dimension 5::
+
+ sage: v = vector(QQ, [1,2,3,4,5])
+ sage: A = v.column()*v.row()
+ sage: has_admissible_extreme_rank(A)
+ True
+
+ But rank 2 is never admissible::
+
+ sage: v1 = vector(QQ, [1,0,0,0,0])
+ sage: v2 = vector(QQ, [0,1,0,0,0])
+ sage: A = v1.column()*v1.row() + v2.column()*v2.row()
+ sage: has_admissible_extreme_rank(A)
+ False
+
+ In dimension 5, three is the only other admissible rank::
+
+ sage: v1 = vector(QQ, [1,0,0,0,0])
+ sage: v2 = vector(QQ, [0,1,0,0,0])
+ sage: v3 = vector(QQ, [0,0,1,0,0])
+ sage: A = v1.column()*v1.row()
+ sage: A += v2.column()*v2.row()
+ sage: A += v3.column()*v3.row()
+ sage: has_admissible_extreme_rank(A)
+ True
"""
if not A.is_symmetric():
r = rank(A)
n = ZZ(A.nrows()) # Columns would work, too, since ``A`` is symmetric.
- if r == 0:
- # Zero is in the doubly-nonnegative cone.
- return True
-
- # See Theorem 3.1 in the cited reference.
- if r == 2:
- return False
-
- if n.mod(2) == 0:
- # n is even
- return r <= max(1, n-3)
- else:
- # n is odd
- return r <= max(1, n-2)
+ return is_admissible_extreme_rank(r,n)
def E(matrix_space, i,j):