The set of all bounded linear operators from $V$ to $W$ is
$\boundedops[W]{V}$. If $W = V$, then we write $\boundedops{V}$
instead.
+
+ The direct sum of $V$ and $W$ is $\directsum{V}{W}$, of course,
+ but what if $W = V^{\perp}$? Then we wish to indicate that fact by
+ writing $\directsumperp{V}{W}$. That operator should survive a
+ display equation, too:
+ %
+ \begin{align*}
+ Z = \directsumperp{V}{W}\\
+ \oplus\oplusperp\oplus\oplusperp
+ \end{align*}
+ %
+ Its form should also survive in different font sizes...
+ \Large
+ \begin{align*}
+ Z = \directsumperp{V}{W}\\
+ \oplus\oplusperp\oplus\oplusperp
+ \end{align*}
+ \Huge
+ \begin{align*}
+ Z = \directsumperp{V}{W}\\
+ \oplus\oplusperp\oplus\oplusperp
+ \end{align*}
+ \normalsize
\end{section}
\begin{section}{Listing}
\fi
}
}
+
+
+%
+% Orthogonal direct sum.
+%
+% Wasysym contains the \ocircle that we use in \directsumperp.
+\usepackage{wasysym}
+\usepackage{scalerel}
+\DeclareMathOperator{\oplusperp}{\mathbin{
+ \ooalign{
+ $\ocircle$\cr
+ \raisebox{\noexpand{0.65\height}}{${\vstretch{0.5}{\perp}}$}\cr
+ }
+}}
+
+\newcommand*{\directsumperp}[2]{ {#1}\oplusperp{#2} }