-def _real_symmetric_basis(n, field):
- """
- Return a basis for the space of real symmetric n-by-n matrices.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import _real_symmetric_basis
-
- TESTS::
-
- sage: set_random_seed()
- sage: n = ZZ.random_element(1,5)
- sage: B = _real_symmetric_basis(n, QQ)
- sage: all( M.is_symmetric() for M in B)
- True
-
- """
- # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
- # coordinates.
- S = []
- for i in xrange(n):
- for j in xrange(i+1):
- Eij = matrix(field, n, lambda k,l: k==i and l==j)
- if i == j:
- Sij = Eij
- else:
- Sij = Eij + Eij.transpose()
- S.append(Sij)
- return tuple(S)
-
-
-def _complex_hermitian_basis(n, field):
- """
- Returns a basis for the space of complex Hermitian n-by-n matrices.
-
- Why do we embed these? Basically, because all of numerical linear
- algebra assumes that you're working with vectors consisting of `n`
- entries from a field and scalars from the same field. There's no way
- to tell SageMath that (for example) the vectors contain complex
- numbers, while the scalar field is real.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import _complex_hermitian_basis
-
- TESTS::
-
- sage: set_random_seed()
- sage: n = ZZ.random_element(1,5)
- sage: field = QuadraticField(2, 'sqrt2')
- sage: B = _complex_hermitian_basis(n, field)
- sage: all( M.is_symmetric() for M in B)
- True
-
- """
- R = PolynomialRing(field, 'z')
- z = R.gen()
- F = NumberField(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
- I = F.gen()
-
- # This is like the symmetric case, but we need to be careful:
- #
- # * We want conjugate-symmetry, not just symmetry.
- # * The diagonal will (as a result) be real.
- #
- S = []
- for i in xrange(n):
- for j in xrange(i+1):
- Eij = matrix(F, n, lambda k,l: k==i and l==j)
- if i == j:
- Sij = _embed_complex_matrix(Eij)
- S.append(Sij)
- else:
- # The second one has a minus because it's conjugated.
- Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
- S.append(Sij_real)
- Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
- S.append(Sij_imag)
- # Since we embedded these, we can drop back to the "field" that we
- # started with instead of the complex extension "F".
- return tuple( s.change_ring(field) for s in S )
+class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
+ @staticmethod
+ def _max_test_case_size():
+ # Play it safe, since this will be squared and the underlying
+ # field can have dimension 4 (quaternions) too.
+ return 3
-def _quaternion_hermitian_basis(n, field):
- """
- Returns a basis for the space of quaternion Hermitian n-by-n matrices.
-
- Why do we embed these? Basically, because all of numerical linear
- algebra assumes that you're working with vectors consisting of `n`
- entries from a field and scalars from the same field. There's no way
- to tell SageMath that (for example) the vectors contain complex
- numbers, while the scalar field is real.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import _quaternion_hermitian_basis
-
- TESTS::
-
- sage: set_random_seed()
- sage: n = ZZ.random_element(1,5)
- sage: B = _quaternion_hermitian_basis(n, QQ)
- sage: all( M.is_symmetric() for M in B )
- True
-
- """
- Q = QuaternionAlgebra(QQ,-1,-1)
- I,J,K = Q.gens()
-
- # This is like the symmetric case, but we need to be careful:
- #
- # * We want conjugate-symmetry, not just symmetry.
- # * The diagonal will (as a result) be real.
- #
- S = []
- for i in xrange(n):
- for j in xrange(i+1):
- Eij = matrix(Q, n, lambda k,l: k==i and l==j)
- if i == j:
- Sij = _embed_quaternion_matrix(Eij)
- S.append(Sij)
- else:
- # Beware, orthogonal but not normalized! The second,
- # third, and fourth ones have a minus because they're
- # conjugated.
- Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
- S.append(Sij_real)
- Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
- S.append(Sij_I)
- Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
- S.append(Sij_J)
- Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
- S.append(Sij_K)
- return tuple(S)
-
-
-
-def _multiplication_table_from_matrix_basis(basis):
- """
- At least three of the five simple Euclidean Jordan algebras have the
- symmetric multiplication (A,B) |-> (AB + BA)/2, where the
- multiplication on the right is matrix multiplication. Given a basis
- for the underlying matrix space, this function returns a
- multiplication table (obtained by looping through the basis
- elements) for an algebra of those matrices.
- """
- # In S^2, for example, we nominally have four coordinates even
- # though the space is of dimension three only. The vector space V
- # is supposed to hold the entire long vector, and the subspace W
- # of V will be spanned by the vectors that arise from symmetric
- # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
- field = basis[0].base_ring()
- dimension = basis[0].nrows()
-
- V = VectorSpace(field, dimension**2)
- W = V.span_of_basis( _mat2vec(s) for s in basis )
- n = len(basis)
- mult_table = [[W.zero() for j in range(n)] for i in range(n)]
- for i in range(n):
- for j in range(n):
- mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
- mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
-
- return mult_table
-
-
-def _embed_complex_matrix(M):
- """
- Embed the n-by-n complex matrix ``M`` into the space of real
- matrices of size 2n-by-2n via the map the sends each entry `z = a +
- bi` to the block matrix ``[[a,b],[-b,a]]``.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (_embed_complex_matrix,
- ....: ComplexHermitianEJA)
-
- EXAMPLES::
-
- sage: F = QuadraticField(-1, 'i')
- sage: x1 = F(4 - 2*i)
- sage: x2 = F(1 + 2*i)
- sage: x3 = F(-i)
- sage: x4 = F(6)
- sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
- sage: _embed_complex_matrix(M)
- [ 4 -2| 1 2]
- [ 2 4|-2 1]
- [-----+-----]
- [ 0 -1| 6 0]
- [ 1 0| 0 6]
-
- TESTS:
-
- Embedding is a homomorphism (isomorphism, in fact)::
-
- sage: set_random_seed()
- sage: n_max = ComplexHermitianEJA._max_test_case_size()
- sage: n = ZZ.random_element(n_max)
- sage: F = QuadraticField(-1, 'i')
- sage: X = random_matrix(F, n)
- sage: Y = random_matrix(F, n)
- sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
- sage: expected = _embed_complex_matrix(X*Y)
- sage: actual == expected
- True
-
- """
- n = M.nrows()
- if M.ncols() != n:
- raise ValueError("the matrix 'M' must be square")
- field = M.base_ring()
- blocks = []
- for z in M.list():
- a = z.vector()[0] # real part, I guess
- b = z.vector()[1] # imag part, I guess
- blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
-
- # We can drop the imaginaries here.
- return matrix.block(field.base_ring(), n, blocks)
-
-
-def _unembed_complex_matrix(M):
- """
- The inverse of _embed_complex_matrix().
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (_embed_complex_matrix,
- ....: _unembed_complex_matrix)
-
- EXAMPLES::
-
- sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
- ....: [-2, 1, -4, 3],
- ....: [ 9, 10, 11, 12],
- ....: [-10, 9, -12, 11] ])
- sage: _unembed_complex_matrix(A)
- [ 2*i + 1 4*i + 3]
- [ 10*i + 9 12*i + 11]
-
- TESTS:
-
- Unembedding is the inverse of embedding::
-
- sage: set_random_seed()
- sage: F = QuadraticField(-1, 'i')
- sage: M = random_matrix(F, 3)
- sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
- True
+ @classmethod
+ def _denormalized_basis(cls, n, field):
+ raise NotImplementedError
- """
- n = ZZ(M.nrows())
- if M.ncols() != n:
- raise ValueError("the matrix 'M' must be square")
- if not n.mod(2).is_zero():
- raise ValueError("the matrix 'M' must be a complex embedding")
-
- field = M.base_ring() # This should already have sqrt2
- R = PolynomialRing(field, 'z')
- z = R.gen()
- F = NumberField(z**2 + 1,'i', embedding=CLF(-1).sqrt())
- i = F.gen()
-
- # Go top-left to bottom-right (reading order), converting every
- # 2-by-2 block we see to a single complex element.
- elements = []
- for k in xrange(n/2):
- for j in xrange(n/2):
- submat = M[2*k:2*k+2,2*j:2*j+2]
- if submat[0,0] != submat[1,1]:
- raise ValueError('bad on-diagonal submatrix')
- if submat[0,1] != -submat[1,0]:
- raise ValueError('bad off-diagonal submatrix')
- z = submat[0,0] + submat[0,1]*i
- elements.append(z)
-
- return matrix(F, n/2, elements)
-
-
-def _embed_quaternion_matrix(M):
- """
- Embed the n-by-n quaternion matrix ``M`` into the space of real
- matrices of size 4n-by-4n by first sending each quaternion entry
- `z = a + bi + cj + dk` to the block-complex matrix
- ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
- a real matrix.
+ def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
+ S = self._denormalized_basis(n, field)
- SETUP::
+ if n > 1 and normalize_basis:
+ # We'll need sqrt(2) to normalize the basis, and this
+ # winds up in the multiplication table, so the whole
+ # algebra needs to be over the field extension.
+ R = PolynomialRing(field, 'z')
+ z = R.gen()
+ p = z**2 - 2
+ if p.is_irreducible():
+ field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
+ S = [ s.change_ring(field) for s in S ]
+ self._basis_normalizers = tuple(
+ ~(self.natural_inner_product(s,s).sqrt()) for s in S )
+ S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
- sage: from mjo.eja.eja_algebra import (_embed_quaternion_matrix,
- ....: QuaternionHermitianEJA)
+ Qs = self.multiplication_table_from_matrix_basis(S)
- EXAMPLES::
+ fdeja = super(MatrixEuclideanJordanAlgebra, self)
+ return fdeja.__init__(field,
+ Qs,
+ rank=n,
+ natural_basis=S,
+ **kwargs)
- sage: Q = QuaternionAlgebra(QQ,-1,-1)
- sage: i,j,k = Q.gens()
- sage: x = 1 + 2*i + 3*j + 4*k
- sage: M = matrix(Q, 1, [[x]])
- sage: _embed_quaternion_matrix(M)
- [ 1 2 3 4]
- [-2 1 -4 3]
- [-3 4 1 -2]
- [-4 -3 2 1]
- Embedding is a homomorphism (isomorphism, in fact)::
+ @staticmethod
+ def multiplication_table_from_matrix_basis(basis):
+ """
+ At least three of the five simple Euclidean Jordan algebras have the
+ symmetric multiplication (A,B) |-> (AB + BA)/2, where the
+ multiplication on the right is matrix multiplication. Given a basis
+ for the underlying matrix space, this function returns a
+ multiplication table (obtained by looping through the basis
+ elements) for an algebra of those matrices.
+ """
+ # In S^2, for example, we nominally have four coordinates even
+ # though the space is of dimension three only. The vector space V
+ # is supposed to hold the entire long vector, and the subspace W
+ # of V will be spanned by the vectors that arise from symmetric
+ # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
+ field = basis[0].base_ring()
+ dimension = basis[0].nrows()
+
+ V = VectorSpace(field, dimension**2)
+ W = V.span_of_basis( _mat2vec(s) for s in basis )
+ n = len(basis)
+ mult_table = [[W.zero() for j in range(n)] for i in range(n)]
+ for i in range(n):
+ for j in range(n):
+ mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
+ mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
- sage: set_random_seed()
- sage: n_max = QuaternionHermitianEJA._max_test_case_size()
- sage: n = ZZ.random_element(n_max)
- sage: Q = QuaternionAlgebra(QQ,-1,-1)
- sage: X = random_matrix(Q, n)
- sage: Y = random_matrix(Q, n)
- sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
- sage: expected = _embed_quaternion_matrix(X*Y)
- sage: actual == expected
- True
+ return mult_table
- """
- quaternions = M.base_ring()
- n = M.nrows()
- if M.ncols() != n:
- raise ValueError("the matrix 'M' must be square")
-
- F = QuadraticField(-1, 'i')
- i = F.gen()
-
- blocks = []
- for z in M.list():
- t = z.coefficient_tuple()
- a = t[0]
- b = t[1]
- c = t[2]
- d = t[3]
- cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
- [-c + d*i, a - b*i]])
- blocks.append(_embed_complex_matrix(cplx_matrix))
-
- # We should have real entries by now, so use the realest field
- # we've got for the return value.
- return matrix.block(quaternions.base_ring(), n, blocks)
-
-
-def _unembed_quaternion_matrix(M):
- """
- The inverse of _embed_quaternion_matrix().
- SETUP::
+ @staticmethod
+ def real_embed(M):
+ """
+ Embed the matrix ``M`` into a space of real matrices.
- sage: from mjo.eja.eja_algebra import (_embed_quaternion_matrix,
- ....: _unembed_quaternion_matrix)
+ The matrix ``M`` can have entries in any field at the moment:
+ the real numbers, complex numbers, or quaternions. And although
+ they are not a field, we can probably support octonions at some
+ point, too. This function returns a real matrix that "acts like"
+ the original with respect to matrix multiplication; i.e.
- EXAMPLES::
+ real_embed(M*N) = real_embed(M)*real_embed(N)
- sage: M = matrix(QQ, [[ 1, 2, 3, 4],
- ....: [-2, 1, -4, 3],
- ....: [-3, 4, 1, -2],
- ....: [-4, -3, 2, 1]])
- sage: _unembed_quaternion_matrix(M)
- [1 + 2*i + 3*j + 4*k]
+ """
+ raise NotImplementedError
- TESTS:
- Unembedding is the inverse of embedding::
+ @staticmethod
+ def real_unembed(M):
+ """
+ The inverse of :meth:`real_embed`.
+ """
+ raise NotImplementedError
- sage: set_random_seed()
- sage: Q = QuaternionAlgebra(QQ, -1, -1)
- sage: M = random_matrix(Q, 3)
- sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
- True
- """
- n = ZZ(M.nrows())
- if M.ncols() != n:
- raise ValueError("the matrix 'M' must be square")
- if not n.mod(4).is_zero():
- raise ValueError("the matrix 'M' must be a complex embedding")
-
- # Use the base ring of the matrix to ensure that its entries can be
- # multiplied by elements of the quaternion algebra.
- field = M.base_ring()
- Q = QuaternionAlgebra(field,-1,-1)
- i,j,k = Q.gens()
-
- # Go top-left to bottom-right (reading order), converting every
- # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
- # quaternion block.
- elements = []
- for l in xrange(n/4):
- for m in xrange(n/4):
- submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
- if submat[0,0] != submat[1,1].conjugate():
- raise ValueError('bad on-diagonal submatrix')
- if submat[0,1] != -submat[1,0].conjugate():
- raise ValueError('bad off-diagonal submatrix')
- z = submat[0,0].vector()[0] # real part
- z += submat[0,0].vector()[1]*i # imag part
- z += submat[0,1].vector()[0]*j # real part
- z += submat[0,1].vector()[1]*k # imag part
- elements.append(z)
-
- return matrix(Q, n/4, elements)
-
-
-
-class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
+ @classmethod
+ def natural_inner_product(cls,X,Y):
+ Xu = cls.real_unembed(X)
+ Yu = cls.real_unembed(Y)
+ tr = (Xu*Yu).trace()
+ if tr in RLF:
+ # It's real already.
+ return tr
+
+ # Otherwise, try the thing that works for complex numbers; and
+ # if that doesn't work, the thing that works for quaternions.
+ try:
+ return tr.vector()[0] # real part, imag part is index 1
+ except AttributeError:
+ # A quaternions doesn't have a vector() method, but does
+ # have coefficient_tuple() method that returns the
+ # coefficients of 1, i, j, and k -- in that order.
+ return tr.coefficient_tuple()[0]
+
+
+class RealSymmetricEJA(MatrixEuclideanJordanAlgebra):
"""
The rank-n simple EJA consisting of real symmetric n-by-n
matrices, the usual symmetric Jordan product, and the trace inner
True
"""
- def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
- S = _real_symmetric_basis(n, field)
+ @classmethod
+ def _denormalized_basis(cls, n, field):
+ """
+ Return a basis for the space of real symmetric n-by-n matrices.
- if n > 1 and normalize_basis:
- # We'll need sqrt(2) to normalize the basis, and this
- # winds up in the multiplication table, so the whole
- # algebra needs to be over the field extension.
- R = PolynomialRing(field, 'z')
- z = R.gen()
- p = z**2 - 2
- if p.is_irreducible():
- field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
- S = [ s.change_ring(field) for s in S ]
- self._basis_normalizers = tuple(
- ~(self.natural_inner_product(s,s).sqrt()) for s in S )
- S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import RealSymmetricEJA
- Qs = _multiplication_table_from_matrix_basis(S)
+ TESTS::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(1,5)
+ sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
+ sage: all( M.is_symmetric() for M in B)
+ True
+
+ """
+ # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
+ # coordinates.
+ S = []
+ for i in xrange(n):
+ for j in xrange(i+1):
+ Eij = matrix(field, n, lambda k,l: k==i and l==j)
+ if i == j:
+ Sij = Eij
+ else:
+ Sij = Eij + Eij.transpose()
+ S.append(Sij)
+ return tuple(S)
- fdeja = super(RealSymmetricEJA, self)
- return fdeja.__init__(field,
- Qs,
- rank=n,
- natural_basis=S,
- **kwargs)
@staticmethod
def _max_test_case_size():
- return 5
+ return 5 # Dimension 10
+
+ @staticmethod
+ def real_embed(M):
+ """
+ Embed the matrix ``M`` into a space of real matrices.
+
+ The matrix ``M`` can have entries in any field at the moment:
+ the real numbers, complex numbers, or quaternions. And although
+ they are not a field, we can probably support octonions at some
+ point, too. This function returns a real matrix that "acts like"
+ the original with respect to matrix multiplication; i.e.
+
+ real_embed(M*N) = real_embed(M)*real_embed(N)
+
+ """
+ return M
+
+
+ @staticmethod
+ def real_unembed(M):
+ """
+ The inverse of :meth:`real_embed`.
+ """
+ return M
+
+
+class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
+ @staticmethod
+ def real_embed(M):
+ """
+ Embed the n-by-n complex matrix ``M`` into the space of real
+ matrices of size 2n-by-2n via the map the sends each entry `z = a +
+ bi` to the block matrix ``[[a,b],[-b,a]]``.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import \
+ ....: ComplexMatrixEuclideanJordanAlgebra
+
+ EXAMPLES::
+
+ sage: F = QuadraticField(-1, 'i')
+ sage: x1 = F(4 - 2*i)
+ sage: x2 = F(1 + 2*i)
+ sage: x3 = F(-i)
+ sage: x4 = F(6)
+ sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
+ sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
+ [ 4 -2| 1 2]
+ [ 2 4|-2 1]
+ [-----+-----]
+ [ 0 -1| 6 0]
+ [ 1 0| 0 6]
+
+ TESTS:
-class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
+ Embedding is a homomorphism (isomorphism, in fact)::
+
+ sage: set_random_seed()
+ sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
+ sage: n = ZZ.random_element(n_max)
+ sage: F = QuadraticField(-1, 'i')
+ sage: X = random_matrix(F, n)
+ sage: Y = random_matrix(F, n)
+ sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
+ sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
+ sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
+ sage: Xe*Ye == XYe
+ True
+
+ """
+ n = M.nrows()
+ if M.ncols() != n:
+ raise ValueError("the matrix 'M' must be square")
+ field = M.base_ring()
+ blocks = []
+ for z in M.list():
+ a = z.vector()[0] # real part, I guess
+ b = z.vector()[1] # imag part, I guess
+ blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
+
+ # We can drop the imaginaries here.
+ return matrix.block(field.base_ring(), n, blocks)
+
+
+ @staticmethod
+ def real_unembed(M):
+ """
+ The inverse of _embed_complex_matrix().
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import \
+ ....: ComplexMatrixEuclideanJordanAlgebra
+
+ EXAMPLES::
+
+ sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
+ ....: [-2, 1, -4, 3],
+ ....: [ 9, 10, 11, 12],
+ ....: [-10, 9, -12, 11] ])
+ sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
+ [ 2*i + 1 4*i + 3]
+ [ 10*i + 9 12*i + 11]
+
+ TESTS:
+
+ Unembedding is the inverse of embedding::
+
+ sage: set_random_seed()
+ sage: F = QuadraticField(-1, 'i')
+ sage: M = random_matrix(F, 3)
+ sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
+ sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
+ True
+
+ """
+ n = ZZ(M.nrows())
+ if M.ncols() != n:
+ raise ValueError("the matrix 'M' must be square")
+ if not n.mod(2).is_zero():
+ raise ValueError("the matrix 'M' must be a complex embedding")
+
+ field = M.base_ring() # This should already have sqrt2
+ R = PolynomialRing(field, 'z')
+ z = R.gen()
+ F = NumberField(z**2 + 1,'i', embedding=CLF(-1).sqrt())
+ i = F.gen()
+
+ # Go top-left to bottom-right (reading order), converting every
+ # 2-by-2 block we see to a single complex element.
+ elements = []
+ for k in xrange(n/2):
+ for j in xrange(n/2):
+ submat = M[2*k:2*k+2,2*j:2*j+2]
+ if submat[0,0] != submat[1,1]:
+ raise ValueError('bad on-diagonal submatrix')
+ if submat[0,1] != -submat[1,0]:
+ raise ValueError('bad off-diagonal submatrix')
+ z = submat[0,0] + submat[0,1]*i
+ elements.append(z)
+
+ return matrix(F, n/2, elements)
+
+
+class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
"""
The rank-n simple EJA consisting of complex Hermitian n-by-n
matrices over the real numbers, the usual symmetric Jordan product,
True
"""
- def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
- S = _complex_hermitian_basis(n, field)
+ @classmethod
+ def _denormalized_basis(cls, n, field):
+ """
+ Returns a basis for the space of complex Hermitian n-by-n matrices.
- if n > 1 and normalize_basis:
- # We'll need sqrt(2) to normalize the basis, and this
- # winds up in the multiplication table, so the whole
- # algebra needs to be over the field extension.
- R = PolynomialRing(field, 'z')
- z = R.gen()
- p = z**2 - 2
- if p.is_irreducible():
- field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
- S = [ s.change_ring(field) for s in S ]
- self._basis_normalizers = tuple(
- ~(self.natural_inner_product(s,s).sqrt()) for s in S )
- S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
+ Why do we embed these? Basically, because all of numerical linear
+ algebra assumes that you're working with vectors consisting of `n`
+ entries from a field and scalars from the same field. There's no way
+ to tell SageMath that (for example) the vectors contain complex
+ numbers, while the scalar field is real.
- Qs = _multiplication_table_from_matrix_basis(S)
+ SETUP::
- fdeja = super(ComplexHermitianEJA, self)
- return fdeja.__init__(field,
- Qs,
- rank=n,
- natural_basis=S,
- **kwargs)
+ sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
+
+ TESTS::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(1,5)
+ sage: field = QuadraticField(2, 'sqrt2')
+ sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
+ sage: all( M.is_symmetric() for M in B)
+ True
+ """
+ R = PolynomialRing(field, 'z')
+ z = R.gen()
+ F = NumberField(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
+ I = F.gen()
+ # This is like the symmetric case, but we need to be careful:
+ #
+ # * We want conjugate-symmetry, not just symmetry.
+ # * The diagonal will (as a result) be real.
+ #
+ S = []
+ for i in xrange(n):
+ for j in xrange(i+1):
+ Eij = matrix(F, n, lambda k,l: k==i and l==j)
+ if i == j:
+ Sij = cls.real_embed(Eij)
+ S.append(Sij)
+ else:
+ # The second one has a minus because it's conjugated.
+ Sij_real = cls.real_embed(Eij + Eij.transpose())
+ S.append(Sij_real)
+ Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
+ S.append(Sij_imag)
+
+ # Since we embedded these, we can drop back to the "field" that we
+ # started with instead of the complex extension "F".
+ return tuple( s.change_ring(field) for s in S )
+
+
+
+class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
@staticmethod
- def _max_test_case_size():
- return 4
+ def real_embed(M):
+ """
+ Embed the n-by-n quaternion matrix ``M`` into the space of real
+ matrices of size 4n-by-4n by first sending each quaternion entry `z
+ = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
+ c+di],[-c + di, a-bi]]`, and then embedding those into a real
+ matrix.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import \
+ ....: QuaternionMatrixEuclideanJordanAlgebra
+
+ EXAMPLES::
+
+ sage: Q = QuaternionAlgebra(QQ,-1,-1)
+ sage: i,j,k = Q.gens()
+ sage: x = 1 + 2*i + 3*j + 4*k
+ sage: M = matrix(Q, 1, [[x]])
+ sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
+ [ 1 2 3 4]
+ [-2 1 -4 3]
+ [-3 4 1 -2]
+ [-4 -3 2 1]
+
+ Embedding is a homomorphism (isomorphism, in fact)::
+
+ sage: set_random_seed()
+ sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
+ sage: n = ZZ.random_element(n_max)
+ sage: Q = QuaternionAlgebra(QQ,-1,-1)
+ sage: X = random_matrix(Q, n)
+ sage: Y = random_matrix(Q, n)
+ sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
+ sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
+ sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
+ sage: Xe*Ye == XYe
+ True
+
+ """
+ quaternions = M.base_ring()
+ n = M.nrows()
+ if M.ncols() != n:
+ raise ValueError("the matrix 'M' must be square")
+
+ F = QuadraticField(-1, 'i')
+ i = F.gen()
+
+ blocks = []
+ for z in M.list():
+ t = z.coefficient_tuple()
+ a = t[0]
+ b = t[1]
+ c = t[2]
+ d = t[3]
+ cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
+ [-c + d*i, a - b*i]])
+ realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
+ blocks.append(realM)
+
+ # We should have real entries by now, so use the realest field
+ # we've got for the return value.
+ return matrix.block(quaternions.base_ring(), n, blocks)
+
+
@staticmethod
- def natural_inner_product(X,Y):
- Xu = _unembed_complex_matrix(X)
- Yu = _unembed_complex_matrix(Y)
- # The trace need not be real; consider Xu = (i*I) and Yu = I.
- return ((Xu*Yu).trace()).vector()[0] # real part, I guess
+ def real_unembed(M):
+ """
+ The inverse of _embed_quaternion_matrix().
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import \
+ ....: QuaternionMatrixEuclideanJordanAlgebra
+
+ EXAMPLES::
+
+ sage: M = matrix(QQ, [[ 1, 2, 3, 4],
+ ....: [-2, 1, -4, 3],
+ ....: [-3, 4, 1, -2],
+ ....: [-4, -3, 2, 1]])
+ sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
+ [1 + 2*i + 3*j + 4*k]
+
+ TESTS:
+ Unembedding is the inverse of embedding::
+ sage: set_random_seed()
+ sage: Q = QuaternionAlgebra(QQ, -1, -1)
+ sage: M = random_matrix(Q, 3)
+ sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
+ sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
+ True
-class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
+ """
+ n = ZZ(M.nrows())
+ if M.ncols() != n:
+ raise ValueError("the matrix 'M' must be square")
+ if not n.mod(4).is_zero():
+ raise ValueError("the matrix 'M' must be a complex embedding")
+
+ # Use the base ring of the matrix to ensure that its entries can be
+ # multiplied by elements of the quaternion algebra.
+ field = M.base_ring()
+ Q = QuaternionAlgebra(field,-1,-1)
+ i,j,k = Q.gens()
+
+ # Go top-left to bottom-right (reading order), converting every
+ # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
+ # quaternion block.
+ elements = []
+ for l in xrange(n/4):
+ for m in xrange(n/4):
+ submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
+ M[4*l:4*l+4,4*m:4*m+4] )
+ if submat[0,0] != submat[1,1].conjugate():
+ raise ValueError('bad on-diagonal submatrix')
+ if submat[0,1] != -submat[1,0].conjugate():
+ raise ValueError('bad off-diagonal submatrix')
+ z = submat[0,0].vector()[0] # real part
+ z += submat[0,0].vector()[1]*i # imag part
+ z += submat[0,1].vector()[0]*j # real part
+ z += submat[0,1].vector()[1]*k # imag part
+ elements.append(z)
+
+ return matrix(Q, n/4, elements)
+
+
+
+class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
"""
The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
matrices, the usual symmetric Jordan product, and the
True
"""
- def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
- S = _quaternion_hermitian_basis(n, field)
+ @classmethod
+ def _denormalized_basis(cls, n, field):
+ """
+ Returns a basis for the space of quaternion Hermitian n-by-n matrices.
- if n > 1 and normalize_basis:
- # We'll need sqrt(2) to normalize the basis, and this
- # winds up in the multiplication table, so the whole
- # algebra needs to be over the field extension.
- R = PolynomialRing(field, 'z')
- z = R.gen()
- p = z**2 - 2
- if p.is_irreducible():
- field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
- S = [ s.change_ring(field) for s in S ]
- self._basis_normalizers = tuple(
- ~(self.natural_inner_product(s,s).sqrt()) for s in S )
- S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
+ Why do we embed these? Basically, because all of numerical
+ linear algebra assumes that you're working with vectors consisting
+ of `n` entries from a field and scalars from the same field. There's
+ no way to tell SageMath that (for example) the vectors contain
+ complex numbers, while the scalar field is real.
- Qs = _multiplication_table_from_matrix_basis(S)
+ SETUP::
- fdeja = super(QuaternionHermitianEJA, self)
- return fdeja.__init__(field,
- Qs,
- rank=n,
- natural_basis=S,
- **kwargs)
+ sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
- @staticmethod
- def _max_test_case_size():
- return 3
+ TESTS::
- @staticmethod
- def natural_inner_product(X,Y):
- Xu = _unembed_quaternion_matrix(X)
- Yu = _unembed_quaternion_matrix(Y)
- # The trace need not be real; consider Xu = (i*I) and Yu = I.
- # The result will be a quaternion algebra element, which doesn't
- # have a "vector" method, but does have coefficient_tuple() method
- # that returns the coefficients of 1, i, j, and k -- in that order.
- return ((Xu*Yu).trace()).coefficient_tuple()[0]
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(1,5)
+ sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
+ sage: all( M.is_symmetric() for M in B )
+ True
+
+ """
+ Q = QuaternionAlgebra(QQ,-1,-1)
+ I,J,K = Q.gens()
+
+ # This is like the symmetric case, but we need to be careful:
+ #
+ # * We want conjugate-symmetry, not just symmetry.
+ # * The diagonal will (as a result) be real.
+ #
+ S = []
+ for i in xrange(n):
+ for j in xrange(i+1):
+ Eij = matrix(Q, n, lambda k,l: k==i and l==j)
+ if i == j:
+ Sij = cls.real_embed(Eij)
+ S.append(Sij)
+ else:
+ # The second, third, and fourth ones have a minus
+ # because they're conjugated.
+ Sij_real = cls.real_embed(Eij + Eij.transpose())
+ S.append(Sij_real)
+ Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
+ S.append(Sij_I)
+ Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
+ S.append(Sij_J)
+ Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
+ S.append(Sij_K)
+ return tuple(S)