-1. Add CartesianProductEJA.
+1. Finish DirectSumEJA: add to_matrix(), random_instance(),
+ one()... methods. Make it subclass RationalBasisEuclideanJordanAlgebra.
+ This is not a general direct sum / cartesian product implementation,
+ it's used only with the other rationalbasis algebras (to make non-
+ simple EJAs out of the simple ones).
2. Add references and start citing them.
3. Implement the octonion simple EJA.
-4. Override random_instance(), one(), et cetera in DirectSumEJA.
-
-5. Switch to QQ in *all* algebras for _charpoly_coefficients().
- This only works when we know that the basis can be rationalized...
- which is the case at least for the concrete EJAs we provide,
- but not in general.
-
-6. Pass already_echelonized (default: False) and echelon_basis
+4. Pass already_echelonized (default: False) and echelon_basis
(default: None) into the subalgebra constructor. The value of
already_echelonized can be passed to V.span_of_basis() to save
some time, and using e.g. FreeModule_submodule_with_basis_field
This may require supporting "basis" as a list of basis vectors
(as opposed to superalgebra elements) in the subalgebra constructor.
-7. The inner product should be an *argument* to the main EJA
- constructor. Afterwards, the basis normalization step should be
- optional (and enabled by default) for ALL algebras, since any
- algebra can have a nonstandard inner-product and its basis can be
- normalized with respect to that inner- product. For example, the
- HadamardEJA could be equipped with an inner- product that is twice
- the usual one. Then for the basis to be orthonormal, we would need
- to divide e.g. (1,0,0) by <(1,0,0),(1,0,0)> = 2 to normalize it.
-
-8. Pre-cache charpoly for some small algebras?
+5. Pre-cache charpoly for some small algebras?
RealSymmetricEJA(4):
sage: F = J.base_ring()
sage: a0 = (1/4)*X[4]**2*X[6]**2 - (1/2)*X[2]*X[5]*X[6]**2 - (1/2)*X[3]*X[4]*X[6]*X[7] + (F(2).sqrt()/2)*X[1]*X[5]*X[6]*X[7] + (1/4)*X[3]**2*X[7]**2 - (1/2)*X[0]*X[5]*X[7]**2 + (F(2).sqrt()/2)*X[2]*X[3]*X[6]*X[8] - (1/2)*X[1]*X[4]*X[6*X[8] - (1/2)*X[1]*X[3]*X[7]*X[8] + (F(2).sqrt()/2)*X[0]*X[4]*X[7]*X[8] + (1/4)*X[1]**2*X[8]**2 - (1/2)*X[0]*X[2]*X[8]**2 - (1/2)*X[2]*X[3]**2*X[9] + (F(2).sqrt()/2)*X[1]*X[3]*X[4]*X[9] - (1/2)*X[0]*X[4]**2*X[9] - (1/2)*X[1]**2*X[5]*X[9] + X[0]*X[2]*X[5]*X[9]
-9. Compute the scalar in the general natural_inner_product() for
+6. Compute the scalar in the general natural_inner_product() for
matrices, so no overrides are necessary.
-10. The main EJA element constructor is happy to convert between
- e.g. HadamardEJA(3) and JordanSpinEJA(3).
+7. The main EJA element constructor is happy to convert between
+ e.g. HadamardEJA(3) and JordanSpinEJA(3).
-11. Figure out if CombinatorialFreeModule's use of IndexedGenerators
- can be used to replace the matrix_basis().
+8. Figure out if CombinatorialFreeModule's use of IndexedGenerators
+ can be used to replace the matrix_basis().
-12. Move the "field" argument to a keyword after basis, jp, and ip.
+9. Move the "field" argument to a keyword after basis, jp, and ip.