"""
-Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
-specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
-are used in optimization, and have some additional nice methods beyond
-what can be supported in a general Jordan Algebra.
-
+Representations and constructions for Euclidean Jordan algebras.
+
+A Euclidean Jordan algebra is a Jordan algebra that has some
+additional properties:
+
+ 1. It is finite-dimensional.
+ 2. Its scalar field is the real numbers.
+ 3a. An inner product is defined on it, and...
+ 3b. That inner product is compatible with the Jordan product
+ in the sense that `<x*y,z> = <y,x*z>` for all elements
+ `x,y,z` in the algebra.
+
+Every Euclidean Jordan algebra is formally-real: for any two elements
+`x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
+0`. Conversely, every finite-dimensional formally-real Jordan algebra
+can be made into a Euclidean Jordan algebra with an appropriate choice
+of inner-product.
+
+Formally-real Jordan algebras were originally studied as a framework
+for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
+symmetric cone optimization, since every symmetric cone arises as the
+cone of squares in some Euclidean Jordan algebra.
+
+It is known that every Euclidean Jordan algebra decomposes into an
+orthogonal direct sum (essentially, a Cartesian product) of simple
+algebras, and that moreover, up to Jordan-algebra isomorphism, there
+are only five families of simple algebras. We provide constructions
+for these simple algebras:
+
+ * :class:`BilinearFormEJA`
+ * :class:`RealSymmetricEJA`
+ * :class:`ComplexHermitianEJA`
+ * :class:`QuaternionHermitianEJA`
+
+Missing from this list is the algebra of three-by-three octononion
+Hermitian matrices, as there is (as of yet) no implementation of the
+octonions in SageMath. In addition to these, we provide two other
+example constructions,
+
+ * :class:`HadamardEJA`
+ * :class:`TrivialEJA`
+
+The Jordan spin algebra is a bilinear form algebra where the bilinear
+form is the identity. The Hadamard EJA is simply a Cartesian product
+of one-dimensional spin algebras. And last but not least, the trivial
+EJA is exactly what you think. Cartesian products of these are also
+supported using the usual ``cartesian_product()`` function; as a
+result, we support (up to isomorphism) all Euclidean Jordan algebras
+that don't involve octonions.
SETUP::
sage: random_eja()
Euclidean Jordan algebra of dimension...
-
"""
from itertools import repeat