sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=8)
sage: (P,S) = motzkin_decomposition(K)
- sage: x = K.random_element()
+ sage: x = K.random_element(ring=QQ)
sage: P.contains(x) or S.contains(x)
True
sage: x.is_zero() or (P.contains(x) != S.contains(x))
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=5)
sage: pi_of_K = positive_operator_gens(K)
- sage: all([ K.contains(P*K.random_element()) for P in pi_of_K ])
+ sage: all([ K.contains(P*K.random_element(QQ)) for P in pi_of_K ])
True
A random element of the positive operator cone should send the
sage: pi_of_K = positive_operator_gens(K)
sage: L = ToricLattice(K.lattice_dim()**2)
sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L)
- sage: P = matrix(K.lattice_dim(), pi_cone.random_element().list())
+ sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list())
sage: all([ K.contains(P*x) for x in K ])
True
sage: pi_of_K = positive_operator_gens(K)
sage: L = ToricLattice(K.lattice_dim()**2)
sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L)
- sage: P = matrix(K.lattice_dim(), pi_cone.random_element().list())
- sage: K.contains(P*K.random_element())
+ sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list())
+ sage: K.contains(P*K.random_element(ring=QQ))
True
The lineality space of the dual of the cone of positive operators
sage: actual == expected
True
+ The lineality of the dual of the cone of positive operators
+ is known from its lineality space::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_ambient_dim=5)
+ sage: n = K.lattice_dim()
+ sage: m = K.dim()
+ sage: l = K.lineality()
+ sage: pi_of_K = positive_operator_gens(K)
+ sage: L = ToricLattice(n**2)
+ sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
+ sage: actual = pi_cone.dual().lineality()
+ sage: expected = l*(m - l) + m*(n - m)
+ sage: actual == expected
+ True
+
The dimension of the cone of positive operators is given by the
corollary in my paper::