sage: actual == expected
True
+ The trivial cone, full space, and half-plane all give rise to the
+ expected dimensions::
+
+ sage: n = ZZ.random_element().abs()
+ sage: K = Cone([[0] * n], ToricLattice(n))
+ sage: K.is_trivial()
+ True
+ sage: L = ToricLattice(n^2)
+ sage: pi_of_K = positive_operator_gens(K)
+ sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim()
+ sage: actual == n^2
+ True
+ sage: K = K.dual()
+ sage: K.is_full_space()
+ True
+ sage: pi_of_K = positive_operator_gens(K)
+ sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim()
+ sage: actual == n^2
+ True
+ sage: K = Cone([(1,0),(0,1),(0,-1)])
+ sage: pi_of_K = positive_operator_gens(K)
+ sage: actual = Cone([p.list() for p in pi_of_K]).dim()
+ sage: actual == 3
+ True
+
+ The cone of positive operators is solid when the original cone is proper::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_ambient_dim=5,
+ ....: strictly_convex=True,
+ ....: solid=True)
+ sage: pi_of_K = positive_operator_gens(K)
+ sage: L = ToricLattice(K.lattice_dim()**2)
+ sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
+ sage: pi_cone.is_solid()
+ True
+
The lineality of the cone of positive operators is given by the
corollary in my paper::
vectors = [ W(tp.list()) for tp in tensor_products ]
# Create the *dual* cone of the positive operators, expressed as
- # long vectors..
+ # long vectors. WARNING: takes forever unless we pass check=False
+ # to Cone().
pi_dual = Cone(vectors, ToricLattice(W.dimension()))
# Now compute the desired cone from its dual...
vectors = [ W(m.list()) for m in tensor_products ]
# Create the *dual* cone of the cross-positive operators,
- # expressed as long vectors..
+ # expressed as long vectors. WARNING: takes forever unless we pass
+ # check=False to Cone().
Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()))
# Now compute the desired cone from its dual...