--- /dev/null
+{-# LANGUAGE FlexibleContexts #-}
+{-# LANGUAGE FlexibleInstances #-}
+{-# LANGUAGE MultiParamTypeClasses #-}
+{-# LANGUAGE ScopedTypeVariables #-}
+{-# LANGUAGE TypeFamilies #-}
+
+module FixedVector
+where
+
+import Data.Vector.Fixed as V
+import Data.Vector.Fixed.Boxed
+import Data.Vector.Fixed.Internal
+
+import Normed
+
+-- | The Vn newtype simply wraps (Vector v a) so that we avoid
+-- undecidable instances.
+newtype Vn a = Vn a
+ deriving (Show)
+
+-- | We would really like to say, "anything that is a vector of
+-- equatable things is itself equatable." The 'Vn' class
+-- allows us to express this without a GHC battle.
+--
+-- Examples:
+--
+-- >>> let v1 = make2d (1,2)
+-- >>> let v2 = make2d (1,2)
+-- >>> let v3 = make2d (3,4)
+-- >>> v1 == v2
+-- True
+-- >>> v1 == v3
+-- False
+--
+instance (Eq a, Vector v a, Vector v Bool) => Eq (Vn (v a)) where
+ (Vn v1) == (Vn v2) = V.foldl (&&) True (V.zipWith (==) v1 v2)
+
+-- | The use of 'Num' here is of course incorrect (otherwise, we
+-- wouldn't have to throw errors). But it's really nice to be able
+-- to use normal addition/subtraction.
+instance (Num a, Vector v a) => Num (Vn (v a)) where
+ -- | Componentwise addition.
+ --
+ -- Examples:
+ --
+ -- >>> let v1 = make2d (1,2)
+ -- >>> let v2 = make2d (3,4)
+ -- >>> v1 + v2
+ -- Vn fromList [4,6]
+ --
+ (Vn v1) + (Vn v2) = Vn $ V.zipWith (+) v1 v2
+
+ (Vn v1) - (Vn v2) = Vn $ V.zipWith (-) v1 v2
+ fromInteger x = Vn $ V.replicate (fromInteger x)
+ (*) = error "multiplication of vectors is undefined"
+ abs = error "absolute value of vectors is undefined"
+ signum = error "signum of vectors is undefined"
+
+instance Functor Vn where
+ fmap f (Vn v1) = Vn (f v1)
+
+instance (RealFloat a, Ord a, Vector v a) => Normed (Vn (v a)) where
+ -- We don't use V.maximum here because it relies on a type
+ -- constraint that the vector be non-empty and I don't know how to
+ -- pattern match it away.
+ norm_infty (Vn v1) = fromRational $ toRational $ V.foldl max 0 v1
+
+ norm_p p (Vn v1) =
+ fromRational $ toRational $ root $ V.sum $ V.map (exponentiate . abs) v1
+ where
+ exponentiate = (** (fromIntegral p))
+ root = (** (recip (fromIntegral p)))
+
+-- | Dot (standard inner) product.
+dot :: (Num a, Vector v a) => Vn (v a) -> Vn (v a) -> a
+dot (Vn v1) (Vn v2) = V.sum $ V.zipWith (*) v1 v2
+
+-- | The angle between @v1@ and @v2@ in Euclidean space.
+angle :: (RealFloat a, Vector v a) => Vn (v a) -> Vn (v a) -> a
+angle v1 v2 =
+ acos theta
+ where
+ theta = (v1 `dot` v2) / norms
+ norms = (norm_p 2 v1) * (norm_p 2 v2)
+
+-- | Convenience function for 2d vectors.
+make2d :: forall a. (a,a) -> Vn (Vec2 a)
+make2d (x,y) =
+ Vn v1
+ where
+ v1 = vec $ con |> x |> y :: Vec2 a
+
+-- | Convenience function for 3d vectors.
+make3d :: forall a. (a,a,a) -> Vn (Vec3 a)
+make3d (x,y,z) =
+ Vn v1
+ where
+ v1 = vec $ con |> x |> y |> z :: Vec3 a
--- /dev/null
+{-# LANGUAGE FlexibleInstances #-}
+
+-- | The 'Normed' class represents elements of a normed vector
+-- space. We define instances for all common numeric types.
+module Normed
+where
+
+import Data.Number.BigFloat
+
+class Normed a where
+ norm_p :: (Integral c, RealFrac b) => c -> a -> b
+ norm_infty :: RealFrac b => a -> b
+
+-- Define instances for common numeric types.
+instance Normed Integer where
+ norm_p _ = fromInteger
+ norm_infty = fromInteger
+
+instance Normed Rational where
+ norm_p _ = fromRational
+ norm_infty = fromRational
+
+instance Epsilon e => Normed (BigFloat e) where
+ norm_p _ = fromRational . toRational
+ norm_infty = fromRational . toRational
+
+instance Normed Double where
+ norm_p _ = fromRational . toRational
+ norm_infty = fromRational . toRational