--- /dev/null
+function alpha = step_size_positive_definite(Q, b, x)
+ % Let,
+ %
+ % f(x) = (1/2)<Qx,x> - <b,x> + a (1)
+ %
+ % where Q is symmetric and positive definite.
+ %
+ % If we seek to minimize f; that is, to solve Qx = b, then we can do
+ % so using the method of steepest-descent. This function computes
+ % the optimal step size alpha for the steepest descent method, in
+ % the negative-gradient direction, at x.
+ %
+ % INPUT:
+ %
+ % - ``Q`` -- the positive-definite matrix in the definition of f(x).
+ %
+ % - ``b`` -- the known vector in the definition of f(x).
+ %
+ % OUTPUT:
+ %
+ % - ``alpha`` -- the optimal step size in the negative gradient
+ % direction.
+ %
+
+ % The gradient of f(x) is Qx - b, and d_k is the negative gradient
+ % direction.
+ d_k = b - Q*x;
+ alpha = (d_k' * d_k) / (d_k' * Q * d_k);
+end