\unionmany{k=1}{\infty}{A_{k}} = \intersectmany{k=1}{\infty}{B_{k}}
\end{equation*}
%
- The powerset of $X$ displays nicely, as $\powerset{X}$. Finally,
- we have the four standard types of intervals in $\Rn[1]$,
+ Finally, we have the four standard types of intervals in $\Rn[1]$,
%
\begin{align*}
\intervaloo{a}{b} &= \setc{ x \in \Rn[1]}{ a < x < b },\\
\begin{section}{Set theory}
The cardinality of the set $X \coloneqq \set{1,2,3}$ is $\card{X}
- = 3$.
+ = 3$, and its powerset is $\powerset{X}$.
\end{section}
\begin{section}{Theorems}
\ifx\havemjocommon\undefined
\def\havemjocommon{1}
-
-\input{mjo-font} % amsfonts and \mathpzc
+\ifx\mathbb\undefined
+ \usepackage{amsfonts}
+\fi
\ifx\bigtimes\undefined
\usepackage{mathtools}
\newcommand*{\directsummany}[3]{ \binopmany{\bigoplus}{#1}{#2}{#3} }
\newcommand*{\unionmany}[3]{ \binopmany{\bigcup}{#1}{#2}{#3} }
-\newcommand*{\powerset}[1]{\mathpzc{P}\of{{#1}}}
-\ifdefined\newglossaryentry
- \newglossaryentry{powerset}{
- name={\ensuremath{\powerset{X}}},
- description={the ``powerset,'' or set of all subsets of $X$},
- sort=p
- }
-\fi
-
% The four standard (UNLESS YOU'RE FRENCH) types of intervals along
% the real line.
\newcommand*{\intervaloo}[2]{ \left({#1},{#2}\right) } % open-open
\ifx\havemjoset\undefined
\def\havemjoset{1}
+\input{mjo-font} % amsfonts and \mathpzc
\ifx\operatorname\undefined
\usepackage{amsopn}
% The cardinality of a set. The |X| notation conflicts with the
% absolute value, and the meaning of card(X) is clear at once, so we
% prefer the latter.
-\newcommand*{\card}[1]{ \operatorname{card} \of{{#1}} }
+\newcommand*{\card}[1]{ \operatorname{card}\of{{#1}} }
+
+
+\newcommand*{\powerset}[1]{\mathpzc{P}\of{{#1}}}
+\ifdefined\newglossaryentry
+ \newglossaryentry{powerset}{
+ name={\ensuremath{\powerset{X}}},
+ description={the ``powerset,'' or set of all subsets of $X$},
+ sort=p
+ }
+\fi
\fi