"""
X = x.natural_representation()
Y = y.natural_representation()
- return self.__class__.natural_inner_product(X,Y)
+ return self.natural_inner_product(X,Y)
def is_trivial(self):
sage: y = J.random_element()
sage: X = x.natural_representation()
sage: Y = y.natural_representation()
- sage: x.inner_product(y) == J.__class__.natural_inner_product(X,Y)
+ sage: x.inner_product(y) == J.natural_inner_product(X,Y)
True
"""
field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
S = [ s.change_ring(field) for s in S ]
self._basis_normalizers = tuple(
- ~(self.__class__.natural_inner_product(s,s).sqrt())
- for s in S )
+ ~(self.natural_inner_product(s,s).sqrt()) for s in S )
S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
Qs = _multiplication_table_from_matrix_basis(S)
field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
S = [ s.change_ring(field) for s in S ]
self._basis_normalizers = tuple(
- ~(self.__class__.natural_inner_product(s,s).sqrt())
- for s in S )
+ ~(self.natural_inner_product(s,s).sqrt()) for s in S )
S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
Qs = _multiplication_table_from_matrix_basis(S)
field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
S = [ s.change_ring(field) for s in S ]
self._basis_normalizers = tuple(
- ~(self.__class__.natural_inner_product(s,s).sqrt())
- for s in S )
+ ~(self.natural_inner_product(s,s).sqrt()) for s in S )
S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
Qs = _multiplication_table_from_matrix_basis(S)
sage: y = J.random_element()
sage: X = x.natural_representation()
sage: Y = y.natural_representation()
- sage: x.inner_product(y) == J.__class__.natural_inner_product(X,Y)
+ sage: x.inner_product(y) == J.natural_inner_product(X,Y)
True
"""