return elt.minimal_polynomial()
+ def is_nilpotent(self):
+ """
+ Return whether or not some power of this element is zero.
+
+ The superclass method won't work unless we're in an
+ associative algebra, and we aren't. However, we generate
+ an assocoative subalgebra and we're nilpotent there if and
+ only if we're nilpotent here (probably).
+
+ TESTS:
+
+ The identity element is never nilpotent::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(2,10).abs()
+ sage: J = eja_rn(n)
+ sage: J.one().is_nilpotent()
+ False
+ sage: J = eja_ln(n)
+ sage: J.one().is_nilpotent()
+ False
+
+ The additive identity is always nilpotent::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(2,10).abs()
+ sage: J = eja_rn(n)
+ sage: J.zero().is_nilpotent()
+ True
+ sage: J = eja_ln(n)
+ sage: J.zero().is_nilpotent()
+ True
+
+ """
+ # The element we're going to call "is_nilpotent()" on.
+ # Either myself, interpreted as an element of a finite-
+ # dimensional algebra, or an element of an associative
+ # subalgebra.
+ elt = None
+
+ if self.parent().is_associative():
+ elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+ else:
+ V = self.span_of_powers()
+ assoc_subalg = self.subalgebra_generated_by()
+ # Mis-design warning: the basis used for span_of_powers()
+ # and subalgebra_generated_by() must be the same, and in
+ # the same order!
+ elt = assoc_subalg(V.coordinates(self.vector()))
+
+ # Recursive call, but should work since elt lives in an
+ # associative algebra.
+ return elt.is_nilpotent()
+
+
def characteristic_polynomial(self):
return self.matrix().characteristic_polynomial()