]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: add the unique spectral_decomposition() for elements.
authorMichael Orlitzky <michael@orlitzky.com>
Mon, 14 Oct 2019 13:43:38 +0000 (09:43 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Mon, 14 Oct 2019 13:43:38 +0000 (09:43 -0400)
mjo/eja/eja_element.py

index ee33e4ba89fcc3c47be1f9467042dae5e678c859..a4af4eaedbb4ce96c16aa31ab0e98c2fa4c5b6c7 100644 (file)
@@ -1040,6 +1040,69 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
 
 
+    def spectral_decomposition(self):
+        """
+        Return the unique spectral decomposition of this element.
+
+        ALGORITHM:
+
+        Following Faraut and Korányi's Theorem III.1.1, we restrict this
+        element's left-multiplication-by operator to the subalgebra it
+        generates. We then compute the spectral decomposition of that
+        operator, and the spectral projectors we get back must be the
+        left-multiplication-by operators for the idempotents we
+        seek. Thus applying them to the identity element gives us those
+        idempotents.
+
+        Since the eigenvalues are required to be distinct, we take
+        the spectral decomposition of the zero element to be zero
+        times the identity element of the algebra (which is idempotent,
+        obviously).
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
+
+        EXAMPLES:
+
+        The spectral decomposition of the identity is ``1`` times itself,
+        and the spectral decomposition of zero is ``0`` times the identity::
+
+            sage: J = RealSymmetricEJA(3,AA)
+            sage: J.one()
+            e0 + e2 + e5
+            sage: J.one().spectral_decomposition()
+            [(1, e0 + e2 + e5)]
+            sage: J.zero().spectral_decomposition()
+            [(0, e0 + e2 + e5)]
+
+        TESTS::
+
+            sage: J = RealSymmetricEJA(4,AA)
+            sage: x = sum(J.gens())
+            sage: sd = x.spectral_decomposition()
+            sage: l0 = sd[0][0]
+            sage: l1 = sd[1][0]
+            sage: c0 = sd[0][1]
+            sage: c1 = sd[1][1]
+            sage: c0.inner_product(c1) == 0
+            True
+            sage: c0.is_idempotent()
+            True
+            sage: c1.is_idempotent()
+            True
+            sage: c0 + c1 == J.one()
+            True
+            sage: l0*c0 + l1*c1 == x
+            True
+
+        """
+        P = self.parent()
+        A = self.subalgebra_generated_by(orthonormalize_basis=True)
+        result = []
+        for (evalue, proj) in A(self).operator().spectral_decomposition():
+            result.append( (evalue, proj(A.one()).superalgebra_element()) )
+        return result
 
     def subalgebra_generated_by(self, orthonormalize_basis=False):
         """