@cached_method
def characteristic_polynomial(self):
"""
+
+ .. WARNING::
+
+ This implementation doesn't guarantee that the polynomial
+ denominator in the coefficients is not identically zero, so
+ theoretically it could crash. The way that this is handled
+ in e.g. Faraut and Koranyi is to use a basis that guarantees
+ the denominator is non-zero. But, doing so requires knowledge
+ of at least one regular element, and we don't even know how
+ to do that. The trade-off is that, if we use the standard basis,
+ the resulting polynomial will accept the "usual" coordinates. In
+ other words, we don't have to do a change of basis before e.g.
+ computing the trace or determinant.
+
EXAMPLES:
The characteristic polynomial in the spin algebra is given in