]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: rename operator_inner_product -> operator_trace inner_product.
authorMichael Orlitzky <michael@orlitzky.com>
Fri, 24 Feb 2023 13:49:04 +0000 (08:49 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Fri, 24 Feb 2023 13:49:04 +0000 (08:49 -0500)
...and add an operator_trace_norm() method, for elements. It would
have been weird to have it called operator_norm(), wouldn't it?

mjo/eja/eja_element.py

index a229fa3f5290854bb3414280b6724f66d3918708..f4d5995ce9302d2fdc518dac2b0ca20f0fadf6d1 100644 (file)
@@ -555,7 +555,7 @@ class EJAElement(IndexedFreeModuleElement):
 
         If computing my determinant will be fast, we do so and compare
         with zero (Proposition II.2.4 in Faraut and
-        Koranyi). Otherwise, Proposition II.3.2 in Faraut and Koranyi
+        Korányi). Otherwise, Proposition II.3.2 in Faraut and Korányi
         reduces the problem to the invertibility of my quadratic
         representation.
 
@@ -1575,7 +1575,75 @@ class EJAElement(IndexedFreeModuleElement):
         # we want the negative of THAT for the trace.
         return -p(*self.to_vector())
 
-    def operator_inner_product(self, other):
+
+    def trace_inner_product(self, other):
+        """
+        Return the trace inner product of myself and ``other``.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS:
+
+        The trace inner product is commutative, bilinear, and associative::
+
+            sage: J = random_eja()
+            sage: x,y,z = J.random_elements(3)
+            sage: # commutative
+            sage: x.trace_inner_product(y) == y.trace_inner_product(x)
+            True
+            sage: # bilinear
+            sage: a = J.base_ring().random_element()
+            sage: actual = (a*(x+z)).trace_inner_product(y)
+            sage: expected = ( a*x.trace_inner_product(y) +
+            ....:              a*z.trace_inner_product(y) )
+            sage: actual == expected
+            True
+            sage: actual = x.trace_inner_product(a*(y+z))
+            sage: expected = ( a*x.trace_inner_product(y) +
+            ....:              a*x.trace_inner_product(z) )
+            sage: actual == expected
+            True
+            sage: # associative
+            sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
+            True
+
+        """
+        if not other in self.parent():
+            raise TypeError("'other' must live in the same algebra")
+
+        return (self*other).trace()
+
+
+    def trace_norm(self):
+        """
+        The norm of this element with respect to :meth:`trace_inner_product`.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  HadamardEJA)
+
+        EXAMPLES::
+
+            sage: J = HadamardEJA(2)
+            sage: x = sum(J.gens())
+            sage: x.trace_norm()
+            1.414213562373095?
+
+        ::
+
+            sage: J = JordanSpinEJA(4)
+            sage: x = sum(J.gens())
+            sage: x.trace_norm()
+            2.828427124746190?
+
+        """
+        return self.trace_inner_product(self).sqrt()
+
+
+    def operator_trace_inner_product(self, other):
         r"""
         Return the operator inner product of myself and ``other``.
 
@@ -1587,10 +1655,10 @@ class EJAElement(IndexedFreeModuleElement):
         Euclidean Jordan algebra, this is another associative inner
         product under which the cone of squares is symmetric.
 
-        This *probably* works even if the basis hasn't been
-        orthonormalized because the eigenvalues of the corresponding
-        matrix don't change when the basis does (they're preserved by
-        any similarity transformation).
+        This works even if the basis hasn't been orthonormalized
+        because the eigenvalues of the corresponding matrix don't
+        change when the basis does (they're preserved by any
+        similarity transformation).
 
         SETUP::
 
@@ -1610,7 +1678,7 @@ class EJAElement(IndexedFreeModuleElement):
             sage: x,y = J.random_elements(2)
             sage: n = J.dimension()
             sage: r = J.rank()
-            sage: actual = x.operator_inner_product(y)
+            sage: actual = x.operator_trace_inner_product(y)
             sage: expected = (n/r)*x.trace_inner_product(y)
             sage: actual == expected
             True
@@ -1621,7 +1689,7 @@ class EJAElement(IndexedFreeModuleElement):
             sage: x,y = J.random_elements(2)
             sage: n = J.dimension()
             sage: r = J.rank()
-            sage: actual = x.operator_inner_product(y)
+            sage: actual = x.operator_trace_inner_product(y)
             sage: expected = (n/r)*x.trace_inner_product(y)
             sage: actual == expected
             True
@@ -1632,7 +1700,7 @@ class EJAElement(IndexedFreeModuleElement):
             sage: x,y = J.random_elements(2)
             sage: n = J.dimension()
             sage: r = J.rank()
-            sage: actual = x.operator_inner_product(y)
+            sage: actual = x.operator_trace_inner_product(y)
             sage: expected = (n/r)*x.trace_inner_product(y)
             sage: actual == expected
             True
@@ -1645,98 +1713,80 @@ class EJAElement(IndexedFreeModuleElement):
             sage: J = random_eja()
             sage: x,y,z = J.random_elements(3)
             sage: # commutative
-            sage: x.operator_inner_product(y) == y.operator_inner_product(x)
+            sage: actual = x.operator_trace_inner_product(y)
+            sage: expected = y.operator_trace_inner_product(x)
+            sage: actual == expected
             True
             sage: # bilinear
             sage: a = J.base_ring().random_element()
-            sage: actual = (a*(x+z)).operator_inner_product(y)
-            sage: expected = ( a*x.operator_inner_product(y) +
-            ....:              a*z.operator_inner_product(y) )
+            sage: actual = (a*(x+z)).operator_trace_inner_product(y)
+            sage: expected = ( a*x.operator_trace_inner_product(y) +
+            ....:              a*z.operator_trace_inner_product(y) )
             sage: actual == expected
             True
-            sage: actual = x.operator_inner_product(a*(y+z))
-            sage: expected = ( a*x.operator_inner_product(y) +
-            ....:              a*x.operator_inner_product(z) )
+            sage: actual = x.operator_trace_inner_product(a*(y+z))
+            sage: expected = ( a*x.operator_trace_inner_product(y) +
+            ....:              a*x.operator_trace_inner_product(z) )
             sage: actual == expected
             True
             sage: # associative
-            sage: actual = (x*y).operator_inner_product(z)
-            sage: expected = y.operator_inner_product(x*z)
+            sage: actual = (x*y).operator_trace_inner_product(z)
+            sage: expected = y.operator_trace_inner_product(x*z)
             sage: actual == expected
             True
 
-        """
-        if not other in self.parent():
-            raise TypeError("'other' must live in the same algebra")
-
-        return (self*other).operator().matrix().trace()
+        Despite the fact that the implementation uses a matrix representation,
+        the answer is independent of the basis used::
 
-
-    def trace_inner_product(self, other):
-        """
-        Return the trace inner product of myself and ``other``.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import random_eja
-
-        TESTS:
-
-        The trace inner product is commutative, bilinear, and associative::
-
-            sage: J = random_eja()
-            sage: x,y,z = J.random_elements(3)
-            sage: # commutative
-            sage: x.trace_inner_product(y) == y.trace_inner_product(x)
-            True
-            sage: # bilinear
-            sage: a = J.base_ring().random_element()
-            sage: actual = (a*(x+z)).trace_inner_product(y)
-            sage: expected = ( a*x.trace_inner_product(y) +
-            ....:              a*z.trace_inner_product(y) )
-            sage: actual == expected
-            True
-            sage: actual = x.trace_inner_product(a*(y+z))
-            sage: expected = ( a*x.trace_inner_product(y) +
-            ....:              a*x.trace_inner_product(z) )
+            sage: J = RealSymmetricEJA(3, field=QQ, orthonormalize=False)
+            sage: V = RealSymmetricEJA(3)
+            sage: x,y = J.random_elements(2)
+            sage: w = V(x.to_matrix())
+            sage: z = V(y.to_matrix())
+            sage: expected = x.operator_trace_inner_product(y)
+            sage: actual = w.operator_trace_inner_product(z)
             sage: actual == expected
             True
-            sage: # associative
-            sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
-            True
 
         """
         if not other in self.parent():
             raise TypeError("'other' must live in the same algebra")
 
-        return (self*other).trace()
+        return (self*other).operator().matrix().trace()
 
 
-    def trace_norm(self):
+    def operator_trace_norm(self):
         """
-        The norm of this element with respect to :meth:`trace_inner_product`.
+        The norm of this element with respect to
+        :meth:`operator_trace_inner_product`.
 
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
             ....:                                  HadamardEJA)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        On a simple algebra, this will differ from :meth:`trace_norm`
+        by the scalar factor ``(n/r).sqrt()``, where `n` is the
+        dimension of the algebra and `r` its rank. This follows from
+        the corresponding result (Proposition III.4.2 of Faraut and
+        Korányi) for the trace inner product::
 
             sage: J = HadamardEJA(2)
             sage: x = sum(J.gens())
-            sage: x.trace_norm()
+            sage: x.operator_trace_norm()
             1.414213562373095?
 
         ::
 
             sage: J = JordanSpinEJA(4)
             sage: x = sum(J.gens())
-            sage: x.trace_norm()
-            2.828427124746190?
+            sage: x.operator_trace_norm()
+            4
 
         """
-        return self.trace_inner_product(self).sqrt()
+        return self.operator_trace_inner_product(self).sqrt()
 
 
 class CartesianProductParentEJAElement(EJAElement):