self.print_options(bracket='')
+ def _element_constructor_(self, elt):
+ """
+ Construct an element of this algebra from its natural
+ representation.
+
+ This gets called only after the parent element _call_ method
+ fails to find a coercion for the argument.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ ....: RealCartesianProductEJA,
+ ....: RealSymmetricEJA)
+
+ EXAMPLES:
+
+ The identity in `S^n` is converted to the identity in the EJA::
+
+ sage: J = RealSymmetricEJA(3)
+ sage: I = matrix.identity(QQ,3)
+ sage: J(I) == J.one()
+ True
+
+ This skew-symmetric matrix can't be represented in the EJA::
+
+ sage: J = RealSymmetricEJA(3)
+ sage: A = matrix(QQ,3, lambda i,j: i-j)
+ sage: J(A)
+ Traceback (most recent call last):
+ ...
+ ArithmeticError: vector is not in free module
+
+ TESTS:
+
+ Ensure that we can convert any element of the two non-matrix
+ simple algebras (whose natural representations are their usual
+ vector representations) back and forth faithfully::
+
+ sage: set_random_seed()
+ sage: J = RealCartesianProductEJA(5)
+ sage: x = J.random_element()
+ sage: J(x.to_vector().column()) == x
+ True
+ sage: J = JordanSpinEJA(5)
+ sage: x = J.random_element()
+ sage: J(x.to_vector().column()) == x
+ True
+
+ """
+ natural_basis = self.natural_basis()
+ if elt not in natural_basis[0].matrix_space():
+ raise ValueError("not a naturally-represented algebra element")
+
+ # Thanks for nothing! Matrix spaces aren't vector
+ # spaces in Sage, so we have to figure out its
+ # natural-basis coordinates ourselves.
+ V = VectorSpace(elt.base_ring(), elt.nrows()*elt.ncols())
+ W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
+ coords = W.coordinate_vector(_mat2vec(elt))
+ return self.from_vector(coords)
+
+
def _repr_(self):
"""
Return a string representation of ``self``.
dir(self.__class__) )
- def __init__(self, A, elt):
- """
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
- ....: random_eja)
-
- EXAMPLES:
-
- The identity in `S^n` is converted to the identity in the EJA::
-
- sage: J = RealSymmetricEJA(3)
- sage: I = matrix.identity(QQ,3)
- sage: J(I) == J.one()
- True
-
- This skew-symmetric matrix can't be represented in the EJA::
-
- sage: J = RealSymmetricEJA(3)
- sage: A = matrix(QQ,3, lambda i,j: i-j)
- sage: J(A)
- Traceback (most recent call last):
- ...
- ArithmeticError: vector is not in free module
-
- TESTS:
-
- Ensure that we can convert any element of the parent's
- underlying vector space back into an algebra element whose
- vector representation is what we started with::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: v = J.vector_space().random_element()
- sage: J(v).to_vector() == v
- True
-
- """
- # Goal: if we're given a matrix, and if it lives in our
- # parent algebra's "natural ambient space," convert it
- # into an algebra element.
- #
- # The catch is, we make a recursive call after converting
- # the given matrix into a vector that lives in the algebra.
- # This we need to try the parent class initializer first,
- # to avoid recursing forever if we're given something that
- # already fits into the algebra, but also happens to live
- # in the parent's "natural ambient space" (this happens with
- # vectors in R^n).
- ifme = super(FiniteDimensionalEuclideanJordanAlgebraElement, self)
- try:
- ifme.__init__(A, elt)
- except ValueError:
- natural_basis = A.natural_basis()
- if elt in natural_basis[0].matrix_space():
- # Thanks for nothing! Matrix spaces aren't vector
- # spaces in Sage, so we have to figure out its
- # natural-basis coordinates ourselves.
- V = VectorSpace(elt.base_ring(), elt.nrows()**2)
- W = V.span( _mat2vec(s) for s in natural_basis )
- coords = W.coordinate_vector(_mat2vec(elt))
- ifme.__init__(A, coords)
def __pow__(self, n):