the value of the game, and both players' strategies.
"""
def __init__(self, game_value, p1_optimal, p2_optimal):
+ """
+ Create a new Solution object from a game value and two optimal
+ strategies for the players.
+ """
self._game_value = game_value
self._player1_optimal = p1_optimal
self._player2_optimal = p2_optimal
def game_value(self):
+ """
+ Return the game value for this solution.
+ """
return self._game_value
def player1_optimal(self):
+ """
+ Return player one's optimal strategy in this solution.
+ """
return self._player1_optimal
def player2_optimal(self):
+ """
+ Return player two's optimal strategy in this solution.
+ """
return self._player2_optimal
The ambient space is assumed to be the span of ``K``.
"""
-
def __init__(self, L, K, e1, e2):
"""
INPUT:
if not K.contains_strict(self._e2):
raise ValueError('the point e2 must lie in the interior of K')
+ def __str__(self):
+ """
+ Return a string representatoin of this game.
+ """
+ return "a game"
+
def solution(self):
+ """
+ Solve this linear game and return a Solution object.
+
+ OUTPUT:
+
+ If the cone program associated with this game could be
+ successfully solved, then a Solution object containing the
+ game's value and optimal strategies is returned. If the game
+ could *not* be solved -- which should never happen -- then a
+ GameUnsolvableException is raised. It can be printed to get the
+ raw output from CVXOPT.
+ """
+ # The cone "C" that appears in the statement of the CVXOPT
+ # conelp program.
C = CartesianProduct(self._K, self._K)
+
+ # The column vector "b" that appears on the right-hand side of
+ # Ax = b in the statement of the CVXOPT conelp program.
b = matrix([1], tc='d')
+
# A column of zeros that fits K.
zero = matrix(0, (self._K.dimension(), 1), tc='d')
+
+ # The column vector "h" that appears on the right-hand side of
+ # Gx + s = h in the statement of the CVXOPT conelp program.
h = matrix([zero, zero])
+
+ # The column vector "c" that appears in the objective function
+ # value <c,x> in the statement of the CVXOPT conelp program.
c = matrix([-1, zero])
+
+ # The matrix "G" that appears on the left-hand side of Gx + s = h
+ # in the statement of the CVXOPT conelp program.
G = append_row(append_col(zero, -identity(self._K.dimension())),
append_col(self._e1, -self._L))
+
+ # The matrix "A" that appears on the right-hand side of Ax = b
+ # in the statement of the CVXOPT conelp program.
A = matrix([0, self._e1], (1, self._K.dimension() + 1), 'd')
+ # Actually solve the thing and obtain a dictionary describing
+ # what happened.
soln_dict = solvers.conelp(c, G, h, C.cvxopt_dims(), A, b)
+ # The "status" field contains "optimal" if everything went
+ # according to plan. Other possible values are "primal
+ # infeasible", "dual infeasible", "unknown", all of which
+ # mean we didn't get a solution. That should never happen,
+ # because by construction our game has a solution, and thus
+ # the cone program should too.
if soln_dict['status'] != 'optimal':
raise GameUnsolvableException(soln_dict)
p2_optimal = soln_dict['z'][self._K.dimension():]
return Solution(p1_value, p1_optimal, p2_optimal)
+
+ def dual(self):
+ """
+ Return the dual game to this game.
+ """
+ return SymmetricLinearGame(self._L.trans(),
+ self._K, # Since "K" is symmetric.
+ self._e2,
+ self._e1)