-- | It's easy to tell if a point is within a cube; just make sure
-- that it falls on the proper side of each of the cube's faces.
- contains_point c p
- | (x_coord p) < (xmin c) = False
- | (x_coord p) > (xmax c) = False
- | (y_coord p) < (ymin c) = False
- | (y_coord p) > (ymax c) = False
- | (z_coord p) < (zmin c) = False
- | (z_coord p) > (zmax c) = False
+ contains_point c (x, y, z)
+ | x < (xmin c) = False
+ | x > (xmax c) = False
+ | y < (ymin c) = False
+ | y > (ymax c) = False
+ | z < (zmin c) = False
+ | z > (zmax c) = False
| otherwise = True
type Point = (Double, Double, Double)
-x_coord :: Point -> Double
-x_coord (x, _, _) = x
-
-y_coord :: Point -> Double
-y_coord (_, y, _) = y
-
-z_coord :: Point -> Double
-z_coord (_, _, z) = z
-
instance Num Point where
(x1,y1,z1) + (x2,y2,z2) = (x1+x2, y1+y2, z1+z2)
(x1,y1,z1) - (x2,y2,z2) = (x1-x2, y1-y2, z1-z2)
-- | Returns the distance between p1 and p2.
distance :: Point -> Point -> Double
-distance p1 p2 =
+distance (x1, y1, z1) (x2, y2, z2) =
sqrt $ (x2 - x1)^(2::Int) + (y2 - y1)^(2::Int) + (z2 - z1)^(2::Int)
- where
- x1 = x_coord p1
- x2 = x_coord p2
- y1 = y_coord p1
- y2 = y_coord p2
- z1 = z_coord p1
- z2 = z_coord p2
-- | Returns 'True' if p1 is close to (within 'epsilon' of) p2,