... for b in basis])
...
sage: f = sin(x)
- sage: legendre_basis = [ legendre_p(k, x, a, b) for k in range(0,4) ]
+ sage: legendre_basis = [ legendre_p(k, x, a, b) for k in xrange(4) ]
sage: proj = project(legendre_basis, f)
sage: proj.simplify_trig()
5/2*(7*(pi^2 - 15)*x^3 - 3*(pi^4 - 21*pi^2)*x)/pi^6
We should agree with Maxima for all `n`::
sage: eq = lambda k: bool(legendre_p(k,x) == legendre_P(k,x))
- sage: all([eq(k) for k in range(0,20) ]) # long time
+ sage: all([eq(k) for k in xrange(20) ]) # long time
True
We can evaluate the result of the zeroth polynomial::
# From Abramowitz & Stegun, (22.3.2) with alpha = beta = 0.
# Also massaged to support finite field elements.
- P = sum([ c(m)*g(m) for m in range(0,n+1) ])/(2**n)
+ P = sum([ c(m)*g(m) for m in xrange(n+1) ])/(2**n)
return P