if not R.is_exact():
# This choice is sufficient to allow the construction of
# QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
- epsilon = 1e-16
+ epsilon = 1e-15
for i in range(self.dimension()):
for j in range(self.dimension()):
In theory, our "field" can be any subfield of the reals::
- sage: RealSymmetricEJA(2, field=RDF)
+ sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
Euclidean Jordan algebra of dimension 3 over Real Double Field
- sage: RealSymmetricEJA(2, field=RR)
+ sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
Euclidean Jordan algebra of dimension 3 over Real Field with
53 bits of precision
In theory, our "field" can be any subfield of the reals::
- sage: ComplexHermitianEJA(2, field=RDF)
+ sage: ComplexHermitianEJA(2, field=RDF, check_axioms=True)
Euclidean Jordan algebra of dimension 4 over Real Double Field
- sage: ComplexHermitianEJA(2, field=RR)
+ sage: ComplexHermitianEJA(2, field=RR, check_axioms=True)
Euclidean Jordan algebra of dimension 4 over Real Field with
53 bits of precision
In theory, our "field" can be any subfield of the reals::
- sage: QuaternionHermitianEJA(2, field=RDF)
+ sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
Euclidean Jordan algebra of dimension 6 over Real Double Field
- sage: QuaternionHermitianEJA(2, field=RR)
+ sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
Euclidean Jordan algebra of dimension 6 over Real Field with
53 bits of precision