]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
Clean up some notation in tests.
authorMichael Orlitzky <michael@orlitzky.com>
Mon, 11 Jan 2016 14:42:36 +0000 (09:42 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Mon, 11 Jan 2016 14:42:36 +0000 (09:42 -0500)
mjo/cone/cone.py

index 28ad0a423717cd2b14ca61d5991818d015617a75..66d6ccfbf1958f9df3e0452ea527a436890293ad 100644 (file)
@@ -419,8 +419,8 @@ def positive_operator_gens(K):
         sage: K.is_full_space()
         True
         sage: pi_of_K = positive_operator_gens(K)
-        sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality()
-        sage: actual == n^2
+        sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
+        sage: pi_cone.lineality() == n^2
         True
         sage: K = Cone([(1,0),(0,1),(0,-1)])
         sage: pi_of_K = positive_operator_gens(K)
@@ -568,12 +568,12 @@ def Z_transformation_gens(K):
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=4)
         sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ],
+        sage: Z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ],
         ....:               lattice=L,
         ....:               check=False)
         sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ]
         sage: lls = L.vector_space().span(ll_basis)
-        sage: z_cone.linear_subspace() == lls
+        sage: Z_cone.linear_subspace() == lls
         True
 
     The lineality of the Z-transformations on a cone is the Lyapunov
@@ -583,10 +583,10 @@ def Z_transformation_gens(K):
         sage: K = random_cone(max_ambient_dim=4)
         sage: Z_of_K = Z_transformation_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: z_cone  = Cone([ z.list() for z in Z_of_K ],
+        sage: Z_cone  = Cone([ z.list() for z in Z_of_K ],
         ....:                lattice=L,
         ....:                check=False)
-        sage: z_cone.lineality() == K.lyapunov_rank()
+        sage: Z_cone.lineality() == K.lyapunov_rank()
         True
 
     The lineality spaces of the duals of the positive operator and
@@ -602,13 +602,13 @@ def Z_transformation_gens(K):
         sage: pi_cone = Cone([p.list() for p in pi_of_K],
         ....:                lattice=L,
         ....:                check=False)
-        sage: z_cone = Cone([ z.list() for z in Z_of_K],
+        sage: Z_cone = Cone([ z.list() for z in Z_of_K],
         ....:               lattice=L,
         ....:               check=False)
-        sage: pi_cone.dim() == z_cone.dim()
+        sage: pi_cone.dim() == Z_cone.dim()
         True
         sage: pi_star = pi_cone.dual()
-        sage: z_star = z_cone.dual()
+        sage: z_star = Z_cone.dual()
         sage: pi_star.linear_subspace() == z_star.linear_subspace()
         True
 
@@ -621,26 +621,26 @@ def Z_transformation_gens(K):
         True
         sage: L = ToricLattice(n^2)
         sage: Z_of_K = Z_transformation_gens(K)
-        sage: z_cone = Cone([z.list() for z in Z_of_K],
+        sage: Z_cone = Cone([z.list() for z in Z_of_K],
         ....:               lattice=L,
         ....:               check=False)
-        sage: actual = z_cone.dim()
+        sage: actual = Z_cone.dim()
         sage: actual == n^2
         True
         sage: K = K.dual()
         sage: K.is_full_space()
         True
-        sage: z_of_K = Z_transformation_gens(K)
-        sage: z_cone = Cone([z.list() for z in Z_of_K],
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: Z_cone = Cone([z.list() for z in Z_of_K],
         ....:                lattice=L,
         ....:                check=False)
-        sage: actual = z_cone.dim()
+        sage: actual = Z_cone.dim()
         sage: actual == n^2
         True
         sage: K = Cone([(1,0),(0,1),(0,-1)])
         sage: Z_of_K = Z_transformation_gens(K)
-        sage: actual = Cone([z.list() for z in Z_of_K], check=False).dim()
-        sage: actual == 3
+        sage: Z_cone = Cone([z.list() for z in Z_of_K], check=False)
+        sage: Z_cone.dim() == 3
         True
     """
     # Matrices are not vectors in Sage, so we have to convert them