mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
for i in range(n) ]
- fdeja = super(HadamardEJA, self)
- fdeja.__init__(field, mult_table, **kwargs)
+ super(HadamardEJA, self).__init__(field,
+ mult_table,
+ check=False,
+ **kwargs)
self.rank.set_cache(n)
def inner_product(self, x, y):
Qs = self.multiplication_table_from_matrix_basis(basis)
- fdeja = super(MatrixEuclideanJordanAlgebra, self)
- fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
- return
+ super(MatrixEuclideanJordanAlgebra, self).__init__(field,
+ Qs,
+ natural_basis=basis,
+ **kwargs)
@cached_method
def __init__(self, n, field=AA, **kwargs):
basis = self._denormalized_basis(n, field)
- super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
+ super(RealSymmetricEJA, self).__init__(field,
+ basis,
+ check=False,
+ **kwargs)
self.rank.set_cache(n)
def __init__(self, n, field=AA, **kwargs):
basis = self._denormalized_basis(n,field)
- super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
+ super(ComplexHermitianEJA,self).__init__(field,
+ basis,
+ check=False,
+ **kwargs)
self.rank.set_cache(n)
def __init__(self, n, field=AA, **kwargs):
basis = self._denormalized_basis(n,field)
- super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
+ super(QuaternionHermitianEJA,self).__init__(field,
+ basis,
+ check=False,
+ **kwargs)
self.rank.set_cache(n)
# The rank of this algebra is two, unless we're in a
# one-dimensional ambient space (because the rank is bounded
# by the ambient dimension).
- fdeja = super(BilinearFormEJA, self)
- fdeja.__init__(field, mult_table, **kwargs)
+ super(BilinearFormEJA, self).__init__(field,
+ mult_table,
+ check=False,
+ **kwargs)
self.rank.set_cache(min(n,2))
def inner_product(self, x, y):
def __init__(self, n, field=AA, **kwargs):
# This is a special case of the BilinearFormEJA with the identity
# matrix as its bilinear form.
- return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
+ super(JordanSpinEJA, self).__init__(n, field, **kwargs)
class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
"""
def __init__(self, field=AA, **kwargs):
mult_table = []
- fdeja = super(TrivialEJA, self)
+ super(TrivialEJA, self).__init__(field,
+ mult_table,
+ check=False,
+ **kwargs)
# The rank is zero using my definition, namely the dimension of the
# largest subalgebra generated by any element.
- fdeja.__init__(field, mult_table, **kwargs)
self.rank.set_cache(0)
p = (J2.monomial(i)*J2.monomial(j)).to_vector()
mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
- fdeja = super(DirectSumEJA, self)
- fdeja.__init__(field, mult_table, **kwargs)
+ super(DirectSumEJA, self).__init__(field,
+ mult_table,
+ check=False,
+ **kwargs)
self.rank.set_cache(J1.rank() + J2.rank())