--- /dev/null
+module Integration.Trapezoid
+where
+
+
+-- | Partition the interval [@a@, @b@] into @n@ subintervals, which we
+-- then return as a list of pairs.
+partition :: (RealFrac a, Integral b)
+ => b -- ^ The number of subintervals to use, @n@
+ -> a -- ^ The \"left\" endpoint of the interval, @a@
+ -> a -- ^ The \"right\" endpoint of the interval, @b@
+ -> [(a,a)]
+ -- Somebody asked for zero subintervals? Ok.
+partition 0 _ _ = []
+partition n a b
+ | n < 0 = error "partition: asked for a negative number of subintervals"
+ | otherwise =
+ [ (xi, xj) | k <- [0..n-1],
+ let k' = fromIntegral k,
+ let xi = a + k'*h,
+ let xj = a + (k'+1)*h ]
+ where
+ h = fromRational $ (toRational (b-a))/(toRational n)
+
+
+-- | Use the trapezoid rule to numerically integrate @f@ over the
+-- interval [@a@, @b@].
+--
+-- Examples:
+--
+-- >>> let f x = x
+-- >>> trapezoid_1 f (-1) 1
+-- 0.0
+--
+-- >>> let f x = x^3
+-- >>> trapezoid_1 f (-1) 1
+-- 0.0
+--
+-- >>> let f x = 1
+-- >>> trapezoid_1 f (-1) 1
+-- 2.0
+--
+-- >>> let f x = x^2
+-- >>> trapezoid_1 f (-1) 1
+-- 2.0
+--
+trapezoid_1 :: (RealFrac a, Fractional b, Num b)
+ => (a -> b) -- ^ The function @f@
+ -> a -- ^ The \"left\" endpoint, @a@
+ -> a -- ^ The \"right\" endpoint, @b@
+ -> b
+trapezoid_1 f a b =
+ (((f a) + (f b)) / 2) * (fromRational $ toRational (b - a))
+
+
+-- | Use the composite trapezoid tule to numerically integrate @f@
+-- over @n@ subintervals of [@a@, @b@].
+--
+-- Examples:
+--
+-- >>> let f x = x^2
+-- >>> let area = trapezoid 1000 f (-1) 1
+-- abs (area - (2/3)) < 0.00001
+-- True
+--
+-- >>> let area = trapezoid 1000 sin (-1) 1
+-- >>> abs (area - 2) < 0.00001
+-- True
+--
+trapezoid :: (RealFrac a, Fractional b, Num b, Integral c)
+ => c -- ^ The number of subintervals to use, @n@
+ -> (a -> b) -- ^ The function @f@
+ -> a -- ^ The \"left\" endpoint, @a@
+ -> a -- ^ The \"right\" endpoint, @b@
+ -> b
+trapezoid n f a b =
+ sum $ map trapezoid_pairs pieces
+ where
+ pieces = partition n a b
+ -- Convert the trapezoid_1 function into one that takes pairs
+ -- (a,b) instead of individual arguments 'a' and 'b'.
+ trapezoid_pairs = uncurry (trapezoid_1 f)