....: for (x,s) in dcs])
True
- The lineality space of Z is LL::
+ The lineality space of the cone of Z-transformations is the space of
+ Lyapunov-like transformations::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=4)
sage: z_cone.linear_subspace() == lls
True
- And thus, the lineality of Z is the Lyapunov rank::
+ The lineality of the Z-transformations on a cone is the Lyapunov
+ rank of that cone::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=4)
sage: z_cone.lineality() == K.lyapunov_rank()
True
- The lineality spaces of pi-star and Z-star are equal:
+ The lineality spaces of the duals of the positive operator and
+ Z-transformation cones are equal. From this it follows that the
+ dimensions of the Z-transformation cone and positive operator cone
+ are equal::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=4)
sage: pi_cone = Cone([p.list() for p in pi_of_K],
....: lattice=L,
....: check=False)
- sage: pi_star = pi_cone.dual()
sage: z_cone = Cone([ z.list() for z in Z_of_K],
....: lattice=L,
....: check=False)
+ sage: pi_cone.dim() == z_cone.dim()
+ True
+ sage: pi_star = pi_cone.dual()
sage: z_star = z_cone.dual()
sage: pi_star.linear_subspace() == z_star.linear_subspace()
True
+
+ The trivial cone, full space, and half-plane all give rise to the
+ expected dimensions::
+
+ sage: n = ZZ.random_element().abs()
+ sage: K = Cone([[0] * n], ToricLattice(n))
+ sage: K.is_trivial()
+ True
+ sage: L = ToricLattice(n^2)
+ sage: Z_of_K = Z_transformation_gens(K)
+ sage: z_cone = Cone([z.list() for z in Z_of_K],
+ ....: lattice=L,
+ ....: check=False)
+ sage: actual = z_cone.dim()
+ sage: actual == n^2
+ True
+ sage: K = K.dual()
+ sage: K.is_full_space()
+ True
+ sage: z_of_K = Z_transformation_gens(K)
+ sage: z_cone = Cone([z.list() for z in Z_of_K],
+ ....: lattice=L,
+ ....: check=False)
+ sage: actual = z_cone.dim()
+ sage: actual == n^2
+ True
+ sage: K = Cone([(1,0),(0,1),(0,-1)])
+ sage: Z_of_K = Z_transformation_gens(K)
+ sage: actual = Cone([z.list() for z in Z_of_K], check=False).dim()
+ sage: actual == 3
+ True
"""
# Matrices are not vectors in Sage, so we have to convert them
# to vectors explicitly before we can find a basis. We need these