void svgtiny_find_gradient(const char *id, struct svgtiny_parse_state *state)
{
+ xmlNode *gradient;
+
fprintf(stderr, "svgtiny_find_gradient: id \"%s\"\n", id);
state->linear_gradient_stop_count = 0;
state->gradient_transform.e = 0;
state->gradient_transform.f = 0;
- xmlNode *gradient = svgtiny_find_element_by_id(
+ gradient = svgtiny_find_element_by_id(
(xmlNode *) state->document, id);
fprintf(stderr, "gradient %p\n", (void *) gradient);
if (!gradient) {
svgtiny_code svgtiny_parse_linear_gradient(xmlNode *linear,
struct svgtiny_parse_state *state)
{
+ unsigned int i = 0;
+ xmlNode *stop;
+ xmlAttr *attr;
xmlAttr *href = xmlHasProp(linear, (const xmlChar *) "href");
if (href && href->children->content[0] == '#')
svgtiny_find_gradient((const char *) href->children->content
+ 1, state);
- for (xmlAttr *attr = linear->properties; attr; attr = attr->next) {
+ for (attr = linear->properties; attr; attr = attr->next) {
const char *name = (const char *) attr->name;
const char *content = (const char *) attr->children->content;
if (strcmp(name, "x1") == 0)
}
}
- unsigned int i = 0;
- for (xmlNode *stop = linear->children; stop; stop = stop->next) {
+ for (stop = linear->children; stop; stop = stop->next) {
float offset = -1;
svgtiny_colour color = svgtiny_TRANSPARENT;
if (strcmp((const char *) stop->name, "stop") != 0)
continue;
- for (xmlAttr *attr = stop->properties; attr;
+ for (attr = stop->properties; attr;
attr = attr->next) {
const char *name = (const char *) attr->name;
const char *content =
svgtiny_code svgtiny_add_path_linear_gradient(float *p, unsigned int n,
struct svgtiny_parse_state *state)
{
- /* determine object bounding box */
+ struct grad_point {
+ float x, y, r;
+ };
float object_x0, object_y0, object_x1, object_y1;
+ float gradient_x0, gradient_y0, gradient_x1, gradient_y1,
+ gradient_dx, gradient_dy;
+ float trans[6];
+ unsigned int steps = 10;
+ float x0 = 0, y0 = 0, x0_trans, y0_trans, r0; /* segment start point */
+ float x1, y1, x1_trans, y1_trans, r1; /* segment end point */
+ /* segment control points (beziers only) */
+ float c0x = 0, c0y = 0, c1x = 0, c1y = 0;
+ float gradient_norm_squared;
+ struct svgtiny_list *pts;
+ float min_r = 1000;
+ unsigned int min_pt = 0;
+ unsigned int j;
+ unsigned int stop_count;
+ unsigned int current_stop;
+ float last_stop_r;
+ float current_stop_r;
+ int red0, green0, blue0, red1, green1, blue1;
+ unsigned int t, a, b;
+
+ /* determine object bounding box */
svgtiny_path_bbox(p, n, &object_x0, &object_y0, &object_x1, &object_y1);
#ifdef GRADIENT_DEBUG
fprintf(stderr, "object bbox: (%g %g) (%g %g)\n",
fprintf(stderr, "x1 %s, y1 %s, x2 %s, y2 %s\n",
state->gradient_x1, state->gradient_y1,
state->gradient_x2, state->gradient_y2);
- float gradient_x0, gradient_y0, gradient_x1, gradient_y1,
- gradient_dx, gradient_dy;
if (!state->gradient_user_space_on_use) {
gradient_x0 = object_x0 +
svgtiny_parse_length(state->gradient_x1,
}*/
/* invert gradient transform for applying to vertices */
- float trans[6];
svgtiny_invert_matrix(&state->gradient_transform.a, trans);
fprintf(stderr, "inverse transform %g %g %g %g %g %g\n",
trans[0], trans[1], trans[2], trans[3],
/* compute points on the path for triangle vertices */
/* r, r0, r1 are distance along gradient vector */
- unsigned int steps = 10;
- float x0 = 0, y0 = 0, x0_trans, y0_trans, r0; /* segment start point */
- float x1, y1, x1_trans, y1_trans, r1; /* segment end point */
- /* segment control points (beziers only) */
- float c0x = 0, c0y = 0, c1x = 0, c1y = 0;
- float gradient_norm_squared = gradient_dx * gradient_dx +
+ gradient_norm_squared = gradient_dx * gradient_dx +
gradient_dy * gradient_dy;
- struct grad_point {
- float x, y, r;
- };
- struct svgtiny_list *pts = svgtiny_list_create(
+ pts = svgtiny_list_create(
sizeof (struct grad_point));
if (!pts)
return svgtiny_OUT_OF_MEMORY;
- float min_r = 1000;
- unsigned int min_pt = 0;
- for (unsigned int j = 0; j != n; ) {
+ for (j = 0; j != n; ) {
int segment_type = (int) p[j];
+ struct grad_point *point;
+ unsigned int z;
if (segment_type == svgtiny_PATH_MOVE) {
x0 = p[j + 1];
r0 = ((x0_trans - gradient_x0) * gradient_dx +
(y0_trans - gradient_y0) * gradient_dy) /
gradient_norm_squared;
- struct grad_point *point = svgtiny_list_push(pts);
+ point = svgtiny_list_push(pts);
if (!point) {
svgtiny_list_free(pts);
return svgtiny_OUT_OF_MEMORY;
r0, r1, steps);
/* loop through intermediate points */
- for (unsigned int z = 1; z != steps; z++) {
+ for (z = 1; z != steps; z++) {
float t, x, y, x_trans, y_trans, r;
+ struct grad_point *point;
t = (float) z / (float) steps;
if (segment_type == svgtiny_PATH_BEZIER) {
x = (1-t) * (1-t) * (1-t) * x0 +
(y_trans - gradient_y0) * gradient_dy) /
gradient_norm_squared;
fprintf(stderr, "(%g %g [%g]) ", x, y, r);
- struct grad_point *point = svgtiny_list_push(pts);
+ point = svgtiny_list_push(pts);
if (!point) {
svgtiny_list_free(pts);
return svgtiny_OUT_OF_MEMORY;
svgtiny_list_size(pts), min_pt, min_r);
/* render triangles */
- unsigned int stop_count = state->linear_gradient_stop_count;
+ stop_count = state->linear_gradient_stop_count;
assert(2 <= stop_count);
- unsigned int current_stop = 0;
- float last_stop_r = 0;
- float current_stop_r = state->gradient_stop[0].offset;
- int red0, green0, blue0, red1, green1, blue1;
+ current_stop = 0;
+ last_stop_r = 0;
+ current_stop_r = state->gradient_stop[0].offset;
red0 = red1 = svgtiny_RED(state->gradient_stop[0].color);
green0 = green1 = svgtiny_GREEN(state->gradient_stop[0].color);
blue0 = blue1 = svgtiny_BLUE(state->gradient_stop[0].color);
- unsigned int t, a, b;
t = min_pt;
a = (min_pt + 1) % svgtiny_list_size(pts);
b = min_pt == 0 ? svgtiny_list_size(pts) - 1 : min_pt - 1;
struct grad_point *point_a = svgtiny_list_get(pts, a);
struct grad_point *point_b = svgtiny_list_get(pts, b);
float mean_r = (point_t->r + point_a->r + point_b->r) / 3;
+ float *p;
+ struct svgtiny_shape *shape;
/*fprintf(stderr, "triangle: t %i %.3f a %i %.3f b %i %.3f "
"mean_r %.3f\n",
t, pts[t].r, a, pts[a].r, b, pts[b].r,
current_stop_r = state->
gradient_stop[current_stop].offset;
}
- float *p = malloc(10 * sizeof p[0]);
+ p = malloc(10 * sizeof p[0]);
if (!p)
return svgtiny_OUT_OF_MEMORY;
p[0] = svgtiny_PATH_MOVE;
p[8] = point_b->y;
p[9] = svgtiny_PATH_CLOSE;
svgtiny_transform_path(p, 10, state);
- struct svgtiny_shape *shape = svgtiny_add_shape(state);
+ shape = svgtiny_add_shape(state);
if (!shape) {
free(p);
return svgtiny_OUT_OF_MEMORY;
/* plot actual path outline */
if (state->stroke != svgtiny_TRANSPARENT) {
+ struct svgtiny_shape *shape;
svgtiny_transform_path(p, n, state);
- struct svgtiny_shape *shape = svgtiny_add_shape(state);
+ shape = svgtiny_add_shape(state);
if (!shape) {
free(p);
return svgtiny_OUT_OF_MEMORY;
void svgtiny_path_bbox(float *p, unsigned int n,
float *x0, float *y0, float *x1, float *y1)
{
+ unsigned int j;
+
*x0 = *x1 = p[1];
*y0 = *y1 = p[2];
- for (unsigned int j = 0; j != n; ) {
+ for (j = 0; j != n; ) {
unsigned int points = 0;
+ unsigned int k;
switch ((int) p[j]) {
case svgtiny_PATH_MOVE:
case svgtiny_PATH_LINE:
assert(0);
}
j++;
- for (unsigned int k = 0; k != points; k++) {
+ for (k = 0; k != points; k++) {
float x = p[j], y = p[j + 1];
if (x < *x0)
*x0 = x;
xmlNode *found;
for (child = node->children; child; child = child->next) {
+ xmlAttr *attr;
if (child->type != XML_ELEMENT_NODE)
continue;
- xmlAttr *attr = xmlHasProp(child, (const xmlChar *) "id");
+ attr = xmlHasProp(child, (const xmlChar *) "id");
if (attr && strcmp(id, (const char *) attr->children->content)
== 0)
return child;