module FixedMatrix
where
-import FixedVector as FV
-import qualified Data.Vector.Fixed as V
+import FixedVector
+import Data.Vector.Fixed (
+ Arity(..),
+ Dim,
+ Vector,
+ (!),
+ )
+import qualified Data.Vector.Fixed as V (
+ fromList,
+ length,
+ map,
+ toList
+ )
import Data.Vector.Fixed.Internal (arity)
type Mat v w a = Vn v (Vn w a)
type Mat4 a = Mat Vec4D Vec4D a
-- | Convert a matrix to a nested list.
-toList :: (V.Vector v (Vn w a), V.Vector w a) => Mat v w a -> [[a]]
-toList m = Prelude.map V.toList (V.toList m)
+toList :: (Vector v (Vn w a), Vector w a) => Mat v w a -> [[a]]
+toList m = map V.toList (V.toList m)
-- | Create a matrix from a nested list.
-fromList :: (V.Vector v (Vn w a), V.Vector w a) => [[a]] -> Mat v w a
-fromList vs = V.fromList $ Prelude.map V.fromList vs
+fromList :: (Vector v (Vn w a), Vector w a) => [[a]] -> Mat v w a
+fromList vs = V.fromList $ map V.fromList vs
-- | Unsafe indexing.
-(!) :: (V.Vector v (Vn w a), V.Vector w a) => Mat v w a -> (Int, Int) -> a
-(!) m (i, j) = (row m i) V.! j
+(!!!) :: (Vector v (Vn w a), Vector w a) => Mat v w a -> (Int, Int) -> a
+(!!!) m (i, j) = (row m i) ! j
-- | Safe indexing.
-(!?) :: (V.Vector v (Vn w a), V.Vector w a) => Mat v w a
- -> (Int, Int)
- -> Maybe a
-(!?) m (i, j)
+(!!?) :: (Vector v (Vn w a), Vector w a) => Mat v w a
+ -> (Int, Int)
+ -> Maybe a
+(!!?) m (i, j)
| i < 0 || j < 0 = Nothing
| i > V.length m = Nothing
| otherwise = if j > V.length (row m j)
then Nothing
- else Just $ (row m j) V.! j
+ else Just $ (row m j) ! j
-- | The number of rows in the matrix.
-nrows :: forall v w a. (V.Vector v (Vn w a), V.Vector w a) => Mat v w a -> Int
+nrows :: forall v w a. (Vector v (Vn w a), Vector w a) => Mat v w a -> Int
nrows = V.length
-- | The number of columns in the first row of the
-- matrix. Implementation stolen from Data.Vector.Fixed.length.
-ncols :: forall v w a. (V.Vector v (Vn w a), V.Vector w a) => Mat v w a -> Int
-ncols _ = arity (undefined :: V.Dim w)
+ncols :: forall v w a. (Vector v (Vn w a), Vector w a) => Mat v w a -> Int
+ncols _ = arity (undefined :: Dim w)
-- | Return the @i@th row of @m@. Unsafe.
-row :: (V.Vector v (Vn w a), V.Vector w a) => Mat v w a
- -> Int
- -> Vn w a
-row m i = m V.! i
+row :: (Vector v (Vn w a), Vector w a) => Mat v w a
+ -> Int
+ -> Vn w a
+row m i = m ! i
-- | Return the @j@th column of @m@. Unsafe.
-column :: (V.Vector v a, V.Vector v (Vn w a), V.Vector w a) => Mat v w a
- -> Int
- -> Vn v a
+column :: (Vector v a, Vector v (Vn w a), Vector w a) => Mat v w a
+ -> Int
+ -> Vn v a
column m j =
V.map (element j) m
where
- element = flip (V.!)
+ element = flip (!)
--- | Transose @m@; switch it's columns and its rows. This is a dirty
+-- | Transpose @m@; switch it's columns and its rows. This is a dirty
-- implementation.. it would be a little cleaner to use imap, but it
-- doesn't seem to work.
-transpose :: (V.Vector v (Vn w a),
- V.Vector w (Vn v a),
- V.Vector v a,
- V.Vector w a)
+--
+-- TODO: Don't cheat with fromList.
+--
+-- Examples:
+--
+-- >>> let m = fromList [[1,2], [3,4]] :: Mat2 Int
+-- >>> transpose m
+-- ((1,3),(2,4))
+--
+transpose :: (Vector v (Vn w a),
+ Vector w (Vn v a),
+ Vector v a,
+ Vector w a)
=> Mat v w a
-> Mat w v a
transpose m = V.fromList column_list
column_list = [ column m i | i <- [0..(ncols m)-1] ]
-- | Is @m@ symmetric?
-symmetric :: (V.Vector v (Vn w a),
- V.Vector w a,
+--
+-- Examples:
+--
+-- >>> let m1 = fromList [[1,2], [2,1]] :: Mat2 Int
+-- >>> symmetric m1
+-- True
+--
+-- >>> let m2 = fromList [[1,2], [3,1]] :: Mat2 Int
+-- >>> symmetric m2
+-- False
+--
+symmetric :: (Vector v (Vn w a),
+ Vector w a,
v ~ w,
- V.Vector w Bool,
+ Vector w Bool,
Eq a)
=> Mat v w a
-> Bool
-- @lambda@ should take two parameters i,j corresponding to the
-- entries in the matrix. The i,j entry of the resulting matrix will
-- have the value returned by lambda i j.
+--
+-- TODO: Don't cheat with fromList.
+--
+-- Examples:
+--
+-- >>> let lambda i j = i + j
+-- >>> construct lambda :: Mat3 Int
+-- ((0,1,2),(1,2,3),(2,3,4))
+--
construct :: forall v w a.
- (V.Vector v (Vn w a),
- V.Vector w a)
+ (Vector v (Vn w a),
+ Vector w a)
=> (Int -> Int -> a)
-> Mat v w a
construct lambda = rows
where
-- The arity trick is used in Data.Vector.Fixed.length.
- imax = (arity (undefined :: V.Dim v)) - 1
- jmax = (arity (undefined :: V.Dim w)) - 1
+ imax = (arity (undefined :: Dim v)) - 1
+ jmax = (arity (undefined :: Dim w)) - 1
row' i = V.fromList [ lambda i j | j <- [0..jmax] ]
rows = V.fromList [ row' i | i <- [0..imax] ]
+
+-- | Given a positive-definite matrix @m@, computes the
+-- upper-triangular matrix @r@ with (transpose r)*r == m and all
+-- values on the diagonal of @r@ positive.
+--
+-- Examples:
+--
+-- >>> let m1 = fromList [[20,-1], [-1,20]] :: Mat2 Double
+-- >>> cholesky m1
+-- ((4.47213595499958,-0.22360679774997896),(0.0,4.466542286825459))
+-- >>> (transpose (cholesky m1)) `mult` (cholesky m1)
+-- ((20.000000000000004,-1.0),(-1.0,20.0))
+--
+cholesky :: forall a v w.
+ (RealFloat a,
+ Vector v (Vn w a),
+ Vector w a)
+ => (Mat v w a)
+ -> (Mat v w a)
+cholesky m = construct r
+ where
+ r :: Int -> Int -> a
+ r i j | i == j = sqrt(m !!! (i,j) - sum [(r k i)**2 | k <- [0..i-1]])
+ | i < j =
+ (((m !!! (i,j)) - sum [(r k i)*(r k j) | k <- [0..i-1]]))/(r i i)
+ | otherwise = 0
+
+-- | Matrix multiplication. Our 'Num' instance doesn't define one, and
+-- we need additional restrictions on the result type anyway.
+--
+-- Examples:
+--
+-- >>> let m1 = fromList [[1,2,3], [4,5,6]] :: Mat Vec2D Vec3D Int
+-- >>> let m2 = fromList [[1,2],[3,4],[5,6]] :: Mat Vec3D Vec2D Int
+-- >>> m1 `mult` m2
+-- ((22,28),(49,64))
+--
+mult :: (Num a,
+ Vector v (Vn w a),
+ Vector w a,
+ Vector w (Vn z a),
+ Vector z a,
+ Vector v (Vn z a))
+ => Mat v w a
+ -> Mat w z a
+ -> Mat v z a
+mult m1 m2 = construct lambda
+ where
+ lambda i j =
+ sum [(m1 !!! (i,k)) * (m2 !!! (k,j)) | k <- [0..(ncols m1)-1] ]