snoc,
sum
)
-import Numeric.LinearAlgebra hiding (i, scale)
+
import Prelude hiding (LT)
import Test.Framework (Test, testGroup)
import Test.Framework.Providers.HUnit (testCase)
--- | The matrix used in the tetrahedron volume calculation as given in
--- Lai & Schumaker, Definition 15.4, page 436.
-vol_matrix :: Tetrahedron -> Matrix Double
-vol_matrix t = (4><4)
- [1, 1, 1, 1,
- x1, x2, x3, x4,
- y1, y2, y3, y4,
- z1, z2, z3, z4 ]
- where
- (x1, y1, z1) = v0 t
- (x2, y2, z2) = v1 t
- (x3, y3, z3) = v2 t
- (x4, y4, z4) = v3 t
+det :: Point -> Point -> Point -> Point -> Double
+det p0 p1 p2 p3 =
+-- Both of these results are just copy/pasted from Sage. One of them
+-- might be more numerically stable, faster, or both.
+--
+-- x1*y2*z4 - x1*y2*z3 + x1*y3*z2 - x1*y3*z4 - x1*y4*z2 + x1*y4*z3 +
+-- x2*y1*z3 - x2*y1*z4 - x2*y3*z1 + x2*y3*z4 +
+-- x2*y4*z1 - x2*y4*z3 - x3*y1*z2 + x3*y1*z4 + x3*y2*z1 - x3*y2*z4 - x3*y4*z1 +
+-- x3*y4*z2 + x4*y1*z2 - x4*y1*z3 - x4*y2*z1 + x4*y2*z3 + x4*y3*z1 - x4*y3*z2
+ -((x2 - x3)*y1 - (x1 - x3)*y2 + (x1 - x2)*y3)*z4 + ((x2 - x4)*y1 - (x1 - x4)*y2 + (x1 - x2)*y4)*z3 + ((x3 - x4)*y2 - (x2 - x4)*y3 + (x2 - x3)*y4)*z1 - ((x3 - x4)*y1 - (x1 - x4)*y3 + (x1 - x3)*y4)*z2
+ where
+ (x1, y1, z1) = p0
+ (x2, y2, z2) = p1
+ (x3, y3, z3) = p2
+ (x4, y4, z4) = p3
+
-- | Computed using the formula from Lai & Schumaker, Definition 15.4,
-- page 436.
volume :: Tetrahedron -> Double
volume t
- | (v0 t) == (v1 t) = 0
- | (v0 t) == (v2 t) = 0
- | (v0 t) == (v3 t) = 0
- | (v1 t) == (v2 t) = 0
- | (v1 t) == (v3 t) = 0
- | (v2 t) == (v3 t) = 0
- | otherwise = (1/6)*(det (vol_matrix t))
+ | v0' == v1' = 0
+ | v0' == v2' = 0
+ | v0' == v3' = 0
+ | v1' == v2' = 0
+ | v1' == v3' = 0
+ | v2' == v3' = 0
+ | otherwise = (1/6)*(det v0' v1' v2' v3')
+ where
+ v0' = v0 t
+ v1' = v1 t
+ v2' = v2 t
+ v3' = v3 t
-- | The barycentric coordinates of a point with respect to v0.