sage: J = JordanSpinEJA(2)
sage: e0,e1 = J.gens()
- sage: x = e0 + e1
+ sage: x = sum( J.gens() )
sage: x.det()
0
+
+ ::
+
sage: J = JordanSpinEJA(3)
sage: e0,e1,e2 = J.gens()
- sage: x = e0 + e1 + e2
+ sage: x = sum( J.gens() )
sage: x.det()
-1
+ TESTS:
+
+ An element is invertible if and only if its determinant is
+ non-zero::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: x.is_invertible() == (x.det() != 0)
+ True
+
"""
- cs = self.characteristic_polynomial().coefficients(sparse=False)
- r = len(cs) - 1
- if r >= 0:
- return cs[0] * (-1)**r
- else:
- raise ValueError('charpoly had no coefficients')
+ P = self.parent()
+ r = P.rank()
+ p = P._charpoly_coeff(0)
+ # The _charpoly_coeff function already adds the factor of
+ # -1 to ensure that _charpoly_coeff(0) is really what
+ # appears in front of t^{0} in the charpoly. However,
+ # we want (-1)^r times THAT for the determinant.
+ return ((-1)**r)*p(*self.vector())
def inverse(self):
sage: J.one().inverse() == J.one()
True
- If an element has an inverse, it acts like one. TODO: this
- can be a lot less ugly once ``is_invertible`` doesn't crash
- on irregular elements::
+ If an element has an inverse, it acts like one::
sage: set_random_seed()
sage: J = random_eja()
sage: x = J.random_element()
- sage: try:
- ....: x.inverse()*x == J.one()
- ....: except:
- ....: True
+ sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
True
"""