return eja_class.random_instance(max_dimension, *args, **kwargs)
-class MatrixEJA(FiniteDimensionalEJA):
+class HermitianMatrixEJA(FiniteDimensionalEJA):
@staticmethod
def _denormalized_basis(A):
"""
- Returns a basis for the space of complex Hermitian n-by-n matrices.
+ Returns a basis for the given Hermitian matrix space.
Why do we embed these? Basically, because all of numerical linear
algebra assumes that you're working with vectors consisting of `n`
sage: from mjo.hurwitz import (ComplexMatrixAlgebra,
....: QuaternionMatrixAlgebra,
....: OctonionMatrixAlgebra)
- sage: from mjo.eja.eja_algebra import MatrixEJA
+ sage: from mjo.eja.eja_algebra import HermitianMatrixEJA
TESTS::
sage: n = ZZ.random_element(1,5)
sage: A = MatrixSpace(QQ, n)
- sage: B = MatrixEJA._denormalized_basis(A)
+ sage: B = HermitianMatrixEJA._denormalized_basis(A)
sage: all( M.is_hermitian() for M in B)
True
sage: n = ZZ.random_element(1,5)
sage: A = ComplexMatrixAlgebra(n, scalars=QQ)
- sage: B = MatrixEJA._denormalized_basis(A)
+ sage: B = HermitianMatrixEJA._denormalized_basis(A)
sage: all( M.is_hermitian() for M in B)
True
sage: n = ZZ.random_element(1,5)
sage: A = QuaternionMatrixAlgebra(n, scalars=QQ)
- sage: B = MatrixEJA._denormalized_basis(A)
+ sage: B = HermitianMatrixEJA._denormalized_basis(A)
sage: all( M.is_hermitian() for M in B )
True
sage: n = ZZ.random_element(1,5)
sage: A = OctonionMatrixAlgebra(n, scalars=QQ)
- sage: B = MatrixEJA._denormalized_basis(A)
+ sage: B = HermitianMatrixEJA._denormalized_basis(A)
sage: all( M.is_hermitian() for M in B )
True
self.rank.set_cache(matrix_space.nrows())
self.one.set_cache( self(matrix_space.one()) )
-class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
+class RealSymmetricEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
"""
The rank-n simple EJA consisting of real symmetric n-by-n
matrices, the usual symmetric Jordan product, and the trace inner
-class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
+class ComplexHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
"""
The rank-n simple EJA consisting of complex Hermitian n-by-n
matrices over the real numbers, the usual symmetric Jordan product,
return cls(n, **kwargs)
-class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
+class QuaternionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
r"""
The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
matrices, the usual symmetric Jordan product, and the
n = ZZ.random_element(max_size + 1)
return cls(n, **kwargs)
-class OctonionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
+class OctonionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
r"""
SETUP::