TESTS:
+ Permuting factors is always a Jordan isomorphism::
+
+ sage: J1 = random_eja(field=QQ, orthonormalize=False)
+ sage: J2 = random_eja(field=QQ, orthonormalize=False)
+ sage: J3 = random_eja(field=QQ, orthonormalize=False)
+ sage: J = cartesian_product([J1,J1,J3,J2,J2])
+ sage: I1 = J1.one().operator().matrix()
+ sage: I2 = J2.one().operator().matrix()
+ sage: I3 = J3.one().operator().matrix()
+ sage: M = block_matrix(5, 5, [[ 0, 0, 0, 0, I2 ],
+ ....: [ 0, I1, 0, 0, 0 ],
+ ....: [ 0, 0, 0, I2, 0 ],
+ ....: [I1, 0, 0, 0, 0 ],
+ ....: [ 0, 0, I3, 0, 0 ]])
+ sage: L = EJAOperator(J,J,M)
+ sage: L.is_isomorphism()
+ True
+ sage: L.inverse().is_isomorphism()
+ True
+ sage: (L^2).is_isomorphism()
+ True
+
The identity operator is always a Jordan isomorphism::
sage: J = random_eja()