sage: J.degree() == (n^2 + n)/2
True
+ The Jordan multiplication is what we think it is::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(1,5)
+ sage: J = RealSymmetricSimpleEJA(n)
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: actual = (x*y).natural_representation()
+ sage: X = x.natural_representation()
+ sage: Y = y.natural_representation()
+ sage: expected = (X*Y + Y*X)/2
+ sage: actual == expected
+ True
+ sage: J(expected) == x*y
+ True
+
"""
S = _real_symmetric_basis(n, field=field)
(Qs, T) = _multiplication_table_from_matrix_basis(S)
sage: J.degree() == n^2
True
+ The Jordan multiplication is what we think it is::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(1,5)
+ sage: J = ComplexHermitianSimpleEJA(n)
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: actual = (x*y).natural_representation()
+ sage: X = x.natural_representation()
+ sage: Y = y.natural_representation()
+ sage: expected = (X*Y + Y*X)/2
+ sage: actual == expected
+ True
+ sage: J(expected) == x*y
+ True
+
"""
S = _complex_hermitian_basis(n)
(Qs, T) = _multiplication_table_from_matrix_basis(S)