\begin{section}{Cone}
The dual cone of $K$ is $\dual{K}$. Some familiar symmetric cones
- are $\Rnplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$. If cones
- $K_{1}$ and $K_{2}$ are given, we can define $\posops{K_{1}}$,
- $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$, $\Zof{K_{1}}$,
- $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can also define $x
- \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K} y$, and $x
- \ltcone_{K} y$ with respect to a cone $K$.
+ are $\Rnplus$, $\Rnplusplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$.
+ If cones $K_{1}$ and $K_{2}$ are given, we can define
+ $\posops{K_{1}}$, $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$,
+ $\Zof{K_{1}}$, $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can
+ also define $x \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K}
+ y$, and $x \ltcone_{K} y$ with respect to a cone $K$.
\end{section}
\begin{section}{Convex}
% Common cones.
%
-% The nonnegative orthant in the given number of dimensions.
+% The nonnegative and strictly positive orthants in the given number
+% of dimensions.
\newcommand*{\Rnplus}[1][n]{ \Rn[#1]_{+} }
+\newcommand*{\Rnplusplus}[1][n]{ \Rn[#1]_{++} }
% The Lorentz ``ice-cream'' cone in the given number of dimensions.
\newcommand*{\Lnplus}[1][n]{ \mathcal{L}^{{#1}}_{+} }