J = MatrixEuclideanJordanAlgebra(QQ,
basis,
normalize_basis=False)
- return J._charpoly_coefficients()
+ a = J._charpoly_coefficients()
+
+ # Unfortunately, changing the basis does change the
+ # coefficients of the characteristic polynomial, but since
+ # these are really the coefficients of the "characteristic
+ # polynomial of" function, everything is still nice and
+ # unevaluated. It's therefore "obvious" how scaling the
+ # basis affects the coordinate variables X1, X2, et
+ # cetera. Scaling the first basis vector up by "n" adds a
+ # factor of 1/n into every "X1" term, for example. So here
+ # we simply undo the basis_normalizer scaling that we
+ # performed earlier.
+ #
+ # TODO: make this access safe.
+ XS = a[0].variables()
+ subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
+ for i in range(len(XS)) }
+ return tuple( a_i.subs(subs_dict) for a_i in a )
@staticmethod