sage: set_random_seed()
sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
sage: x = J.random_element()
- sage: x.operator().matrix().is_symmetric()
+ sage: x.operator().is_self_adjoint()
True
"""
return (self + (-other))
+ def is_self_adjoint(self):
+ r"""
+ Return whether or not this operator is self-adjoint.
+
+ At least in Sage, the fact that the base field is real means
+ that the algebra elements have to be real as well (this is why
+ we embed the complex numbers and quaternions). As a result, the
+ matrix of this operator will contain only real entries, and it
+ suffices to check only symmetry, not conjugate symmetry.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA)
+
+ EXAMPLES::
+
+ sage: J = JordanSpinEJA(4)
+ sage: J.one().operator().is_self_adjoint()
+ True
+
+ """
+ return self.matrix().is_symmetric()
+
+
def is_zero(self):
r"""
Return whether or not this map is the zero operator.