sage: actual == expected
True
+ Ensure that the cached unit element (often precomputed by
+ hand) agrees with the computed one::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: cached = J.one()
+ sage: J.one.clear_cache()
+ sage: J.one() == cached
+ True
+
"""
# We can brute-force compute the matrices of the operators
# that correspond to the basis elements of this algebra.
# time to ensure that it isn't a generator expression.
basis = tuple(basis)
- if len(basis) > 1 and normalize_basis:
+ algebra_dim = len(basis)
+ if algebra_dim > 1 and normalize_basis:
# We'll need sqrt(2) to normalize the basis, and this
# winds up in the multiplication table, so the whole
# algebra needs to be over the field extension.
natural_basis=basis,
**kwargs)
+ if algebra_dim == 0:
+ self.one.set_cache(self.zero())
+ else:
+ n = basis[0].nrows()
+ # The identity wrt (A,B) -> (AB + BA)/2 is independent of the
+ # details of this algebra.
+ self.one.set_cache(self(matrix.identity(field,n)))
+
@cached_method
def _charpoly_coefficients(self):
check_axioms=False,
**kwargs)
self.rank.set_cache(n)
+ self.one.set_cache( sum(self.gens()) )
@staticmethod
def _max_random_instance_size():
**kwargs)
self.rank.set_cache(min(n,2))
+ if n == 0:
+ self.one.set_cache( self.zero() )
+ else:
+ self.one.set_cache( self.monomial(0) )
+
@staticmethod
def _max_random_instance_size():
return 5
# The rank is zero using my definition, namely the dimension of the
# largest subalgebra generated by any element.
self.rank.set_cache(0)
+ self.one.set_cache( self.zero() )
@classmethod
def random_instance(cls, field=AA, **kwargs):