type Col4 a = Col N4 a
type Col5 a = Col N5 a
+-- We need a big column for Gaussian quadrature.
+type N10 = S (S (S (S (S N5))))
+type Col10 a = Col N10 a
+
+
instance (Eq a) => Eq (Mat m n a) where
-- | Compare a row at a time.
--
--
-- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int
-- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int
--- >>> zipcol m1 m2
+-- >>> colzip m1 m2
-- (((1,1)),((1,2)),((1,3)))
--
-zipcol :: Arity m => Col m a -> Col m a -> Col m (a,a)
-zipcol c1 c2 =
+colzip :: Arity m => Col m a -> Col m a -> Col m (a,a)
+colzip c1 c2 =
construct lambda
where
lambda i j = (c1 !!! (i,j), c2 !!! (i,j))
+-- | Zip together two column matrices using the supplied function.
+--
+-- Examples:
+--
+-- >>> let c1 = fromList [[1],[2],[3]] :: Col3 Integer
+-- >>> let c2 = fromList [[4],[5],[6]] :: Col3 Integer
+-- >>> colzipwith (^) c1 c2
+-- ((1),(32),(729))
+--
+colzipwith :: Arity m
+ => (a -> a -> b)
+ -> Col m a
+ -> Col m a
+ -> Col m b
+colzipwith f c1 c2 =
+ construct lambda
+ where
+ lambda i j = f (c1 !!! (i,j)) (c2 !!! (i,j))
+
+
-- | Map a function over a matrix of any dimensions.
--
-- Examples: