return Cone(rays, lattice=L)
+def discrete_complementarity_set(K):
+ r"""
+ Compute the discrete complementarity set of this cone.
+
+ The complementarity set of this cone is the set of all orthogonal
+ pairs `(x,s)` such that `x` is in this cone, and `s` is in its
+ dual. The discrete complementarity set restricts `x` and `s` to be
+ generators of their respective cones.
+
+ OUTPUT:
+
+ A list of pairs `(x,s)` such that,
+
+ * `x` is in this cone.
+ * `x` is a generator of this cone.
+ * `s` is in this cone's dual.
+ * `s` is a generator of this cone's dual.
+ * `x` and `s` are orthogonal.
+
+ EXAMPLES:
+
+ The discrete complementarity set of the nonnegative orthant consists
+ of pairs of standard basis vectors::
+
+ sage: K = Cone([(1,0),(0,1)])
+ sage: discrete_complementarity_set(K)
+ [((1, 0), (0, 1)), ((0, 1), (1, 0))]
+
+ If the cone consists of a single ray, the second components of the
+ discrete complementarity set should generate the orthogonal
+ complement of that ray::
+
+ sage: K = Cone([(1,0)])
+ sage: discrete_complementarity_set(K)
+ [((1, 0), (0, 1)), ((1, 0), (0, -1))]
+ sage: K = Cone([(1,0,0)])
+ sage: discrete_complementarity_set(K)
+ [((1, 0, 0), (0, 1, 0)),
+ ((1, 0, 0), (0, -1, 0)),
+ ((1, 0, 0), (0, 0, 1)),
+ ((1, 0, 0), (0, 0, -1))]
+
+ When the cone is the entire space, its dual is the trivial cone, so
+ the discrete complementarity set is empty::
+
+ sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
+ sage: discrete_complementarity_set(K)
+ []
+
+ TESTS:
+
+ The complementarity set of the dual can be obtained by switching the
+ components of the complementarity set of the original cone::
+
+ sage: K1 = random_cone(0,10,0,10)
+ sage: K2 = K1.dual()
+ sage: expected = [(x,s) for (s,x) in discrete_complementarity_set(K2)]
+ sage: actual = discrete_complementarity_set(K1)
+ sage: actual == expected
+ True
+
+ """
+ V = K.lattice().vector_space()
+
+ # Convert the rays to vectors so that we can compute inner
+ # products.
+ xs = [V(x) for x in K.rays()]
+ ss = [V(s) for s in K.dual().rays()]
+
+ return [(x,s) for x in xs for s in ss if x.inner_product(s) == 0]
+
+
def lyapunov_rank(K):
r"""
Compute the Lyapunov (or bilinearity) rank of this cone.
"""
V = K.lattice().vector_space()
- xs = [V(x) for x in K.rays()]
- ss = [V(s) for s in K.dual().rays()]
-
- # WARNING: This isn't really C(K), it only contains the pairs
- # (x,s) in C(K) where x,s are extreme in their respective cones.
- C_of_K = [(x,s) for x in xs for s in ss if x.inner_product(s) == 0]
+ C_of_K = discrete_complementarity_set(K)
- matrices = [x.column() * s.row() for (x,s) in C_of_K]
+ matrices = [x.tensor_product(s) for (x,s) in C_of_K]
# Sage doesn't think matrices are vectors, so we have to convert
# our matrices to vectors explicitly before we can figure out how