Example 11.11::
sage: set_random_seed()
- sage: n = ZZ.random_element(1,10).abs()
+ sage: n = ZZ.random_element(1,10)
sage: J = JordanSpinSimpleEJA(n)
sage: x = J.random_element()
sage: while x.is_zero():
aren't multiples of the identity are regular::
sage: set_random_seed()
- sage: n = ZZ.random_element(1,10).abs()
+ sage: n = ZZ.random_element(1,10)
sage: J = JordanSpinSimpleEJA(n)
sage: x = J.random_element()
sage: x == x.coefficient(0)*J.one() or x.degree() == 2
identity::
sage: set_random_seed()
- sage: n = ZZ.random_element(2,10).abs()
+ sage: n = ZZ.random_element(2,10)
sage: J = JordanSpinSimpleEJA(n)
sage: y = J.random_element()
sage: while y == y.coefficient(0)*J.one():
Alizadeh's Example 11.12::
sage: set_random_seed()
- sage: n = ZZ.random_element(1,10).abs()
+ sage: n = ZZ.random_element(1,10)
sage: J = JordanSpinSimpleEJA(n)
sage: x = J.random_element()
sage: x_vec = x.vector()
Property 6:
- sage: k = ZZ.random_element(1,10).abs()
+ sage: k = ZZ.random_element(1,10)
sage: actual = (x^k).quadratic_representation()
sage: expected = (x.quadratic_representation())^k
sage: actual == expected
Euclidean Jordan algebra of degree...
"""
- n = ZZ.random_element(1,5).abs()
+ n = ZZ.random_element(1,5)
constructor = choice([eja_rn,
JordanSpinSimpleEJA,
RealSymmetricSimpleEJA,
TESTS::
sage: set_random_seed()
- sage: n = ZZ.random_element(1,5).abs()
+ sage: n = ZZ.random_element(1,5)
sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
True
The degree of this algebra is `(n^2 + n) / 2`::
sage: set_random_seed()
- sage: n = ZZ.random_element(1,5).abs()
+ sage: n = ZZ.random_element(1,5)
sage: J = RealSymmetricSimpleEJA(n)
sage: J.degree() == (n^2 + n)/2
True
The degree of this algebra is `n^2`::
sage: set_random_seed()
- sage: n = ZZ.random_element(1,5).abs()
+ sage: n = ZZ.random_element(1,5)
sage: J = ComplexHermitianSimpleEJA(n)
sage: J.degree() == n^2
True