sage: Z_transformation_gens(K)
[]
+ Every operator is a Z-transformation on the ambient vector space::
+
+ sage: K = Cone([(1,),(-1,)])
+ sage: K.is_full_space()
+ True
+ sage: Z_transformation_gens(K)
+ [[-1], [1]]
+
+ sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
+ sage: K.is_full_space()
+ True
+ sage: Z_transformation_gens(K)
+ [
+ [-1 0] [1 0] [ 0 -1] [0 1] [ 0 0] [0 0] [ 0 0] [0 0]
+ [ 0 0], [0 0], [ 0 0], [0 0], [-1 0], [1 0], [ 0 -1], [0 1]
+ ]
+
+ A non-obvious application is to find the Z-transformations on the
+ right half-plane::
+
+ sage: K = Cone([(1,0),(0,1),(0,-1)])
+ sage: Z_transformation_gens(K)
+ [
+ [-1 0] [1 0] [ 0 0] [0 0] [ 0 0] [0 0]
+ [ 0 0], [0 0], [-1 0], [1 0], [ 0 -1], [0 1]
+ ]
+
Z-transformations on a subspace are Lyapunov-like and vice-versa::
sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])