EXAMPLES::
- sage: J = eja_ln(2)
+ sage: J = JordanSpinSimpleEJA(2)
sage: e0,e1 = J.gens()
sage: x = e0 + e1
sage: x.det()
0
- sage: J = eja_ln(3)
+ sage: J = JordanSpinSimpleEJA(3)
sage: e0,e1,e2 = J.gens()
sage: x = e0 + e1 + e2
sage: x.det()
The identity element always has degree one, but any element
linearly-independent from it is regular::
- sage: J = eja_ln(5)
+ sage: J = JordanSpinSimpleEJA(5)
sage: J.one().is_regular()
False
sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
EXAMPLES::
- sage: J = eja_ln(4)
+ sage: J = JordanSpinSimpleEJA(4)
sage: J.one().degree()
1
sage: e0,e1,e2,e3 = J.gens()
sage: set_random_seed()
sage: n = ZZ.random_element(1,10).abs()
- sage: J = eja_ln(n)
+ sage: J = JordanSpinSimpleEJA(n)
sage: x = J.random_element()
sage: x == x.coefficient(0)*J.one() or x.degree() == 2
True
sage: set_random_seed()
sage: n = ZZ.random_element(2,10).abs()
- sage: J = eja_ln(n)
+ sage: J = JordanSpinSimpleEJA(n)
sage: y = J.random_element()
sage: while y == y.coefficient(0)*J.one():
....: y = J.random_element()
Alizadeh's Example 11.12::
sage: n = ZZ.random_element(1,10).abs()
- sage: J = eja_ln(n)
+ sage: J = JordanSpinSimpleEJA(n)
sage: x = J.random_element()
sage: x_vec = x.vector()
sage: x0 = x_vec[0]
sage: c = J.random_element().subalgebra_idempotent()
sage: c^2 == c
True
- sage: J = eja_ln(5)
+ sage: J = JordanSpinSimpleEJA(5)
sage: c = J.random_element().subalgebra_idempotent()
sage: c^2 == c
True
EXAMPLES::
- sage: J = eja_ln(3)
+ sage: J = JordanSpinSimpleEJA(3)
sage: e0,e1,e2 = J.gens()
sage: x = e0 + e1 + e2
sage: x.trace()
return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
-def eja_ln(dimension, field=QQ):
- """
- Return the Jordan algebra corresponding to the Lorentz "ice cream"
- cone of the given ``dimension``.
-
- EXAMPLES:
-
- This multiplication table can be verified by hand::
-
- sage: J = eja_ln(4)
- sage: e0,e1,e2,e3 = J.gens()
- sage: e0*e0
- e0
- sage: e0*e1
- e1
- sage: e0*e2
- e2
- sage: e0*e3
- e3
- sage: e1*e2
- 0
- sage: e1*e3
- 0
- sage: e2*e3
- 0
-
- In one dimension, this is the reals under multiplication::
-
- sage: J1 = eja_ln(1)
- sage: J2 = eja_rn(1)
- sage: J1 == J2
- True
-
- """
- Qs = []
- id_matrix = identity_matrix(field,dimension)
- for i in xrange(dimension):
- ei = id_matrix.column(i)
- Qi = zero_matrix(field,dimension)
- Qi.set_row(0, ei)
- Qi.set_column(0, ei)
- Qi += diagonal_matrix(dimension, [ei[0]]*dimension)
- # The addition of the diagonal matrix adds an extra ei[0] in the
- # upper-left corner of the matrix.
- Qi[0,0] = Qi[0,0] * ~field(2)
- Qs.append(Qi)
-
- # The rank of the spin factor algebra is two, UNLESS we're in a
- # one-dimensional ambient space (the rank is bounded by the
- # ambient dimension).
- rank = min(dimension,2)
- return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=rank)
-
-
-def eja_sn(dimension, field=QQ):
- """
- Return the simple Jordan algebra of ``dimension``-by-``dimension``
- symmetric matrices over ``field``.
-
- EXAMPLES::
-
- sage: J = eja_sn(2)
- sage: e0, e1, e2 = J.gens()
- sage: e0*e0
- e0
- sage: e1*e1
- e0 + e2
- sage: e2*e2
- e2
-
- """
- S = _real_symmetric_basis(dimension, field=field)
- Qs = _multiplication_table_from_matrix_basis(S)
-
- return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
-
def random_eja():
"""
"""
n = ZZ.random_element(1,5).abs()
- constructor = choice([eja_rn, eja_ln, eja_sn, ComplexHermitianSimpleEJA])
+ constructor = choice([eja_rn,
+ JordanSpinSimpleEJA,
+ RealSymmetricSimpleEJA,
+ ComplexHermitianSimpleEJA])
return constructor(n, field=QQ)
return matrix(F, n/2, elements)
-def RealSymmetricSimpleEJA(n):
+def RealSymmetricSimpleEJA(n, field=QQ):
"""
The rank-n simple EJA consisting of real symmetric n-by-n
matrices, the usual symmetric Jordan product, and the trace inner
product. It has dimension `(n^2 + n)/2` over the reals.
+
+ EXAMPLES::
+
+ sage: J = RealSymmetricSimpleEJA(2)
+ sage: e0, e1, e2 = J.gens()
+ sage: e0*e0
+ e0
+ sage: e1*e1
+ e0 + e2
+ sage: e2*e2
+ e2
"""
- pass
+ S = _real_symmetric_basis(n, field=field)
+ Qs = _multiplication_table_from_matrix_basis(S)
+
+ return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=n)
+
def ComplexHermitianSimpleEJA(n, field=QQ):
"""
n = 3
pass
-def JordanSpinSimpleEJA(n):
+def JordanSpinSimpleEJA(n, field=QQ):
"""
The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
with the usual inner product and jordan product ``x*y =
(<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
the reals.
+
+ EXAMPLES:
+
+ This multiplication table can be verified by hand::
+
+ sage: J = JordanSpinSimpleEJA(4)
+ sage: e0,e1,e2,e3 = J.gens()
+ sage: e0*e0
+ e0
+ sage: e0*e1
+ e1
+ sage: e0*e2
+ e2
+ sage: e0*e3
+ e3
+ sage: e1*e2
+ 0
+ sage: e1*e3
+ 0
+ sage: e2*e3
+ 0
+
+ In one dimension, this is the reals under multiplication::
+
+ sage: J1 = JordanSpinSimpleEJA(1)
+ sage: J2 = eja_rn(1)
+ sage: J1 == J2
+ True
+
"""
- pass
+ Qs = []
+ id_matrix = identity_matrix(field, n)
+ for i in xrange(n):
+ ei = id_matrix.column(i)
+ Qi = zero_matrix(field, n)
+ Qi.set_row(0, ei)
+ Qi.set_column(0, ei)
+ Qi += diagonal_matrix(n, [ei[0]]*n)
+ # The addition of the diagonal matrix adds an extra ei[0] in the
+ # upper-left corner of the matrix.
+ Qi[0,0] = Qi[0,0] * ~field(2)
+ Qs.append(Qi)
+
+ # The rank of the spin factor algebra is two, UNLESS we're in a
+ # one-dimensional ambient space (the rank is bounded by the
+ # ambient dimension).
+ return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=min(n,2))