4. Come up with a fast heuristic (like making nu huge and taking e1 as
our point) that finds a primal feasible point.
-12. Investigate this test failure too. It looks like it was really
- close to being solved, but we would have needed a fudge factor
- of three instead of two.
-
- ERROR: test_positive_operator_value (test.symmetric_linear_game_test
- .SymmetricLinearGameTest)
- ----------------------------------------------------------------------
- Traceback (most recent call last):
- File "/home/mjo/src/dunshire/test/symmetric_linear_game_test.py",
- line 550, in test_positive_operator_value
- self.assertTrue(G.solution().game_value() >= -options.ABS_TOL)
- File "/home/mjo/src/dunshire/dunshire/games.py", line 515, in solution
- raise GameUnsolvableException(self, soln_dict)
- dunshire.errors.GameUnsolvableException: Solution failed with result
- "unknown."
- The linear game (L, K, e1, e2) where
- L = [8.0814704 3.5584693]
- [3.9986814 9.3381562],
- K = Nonnegative orthant in the real 2-space,
- e1 = [1.3288182]
- [0.7458942],
- e2 = [0.6814326]
- [3.3799082],
- Condition((L, K, e1, e2)) = 41.093597.
- CVXOPT returned:
- dual infeasibility: 2.368640021750079e-06
- dual objective: -7.867137172157051
- dual slack: 1.1314089173606103e-07
- gap: 1.1404410161224882e-06
- iterations: 6
- primal infeasibility: 1.379959981010593e-07
- primal objective: -7.867137449574777
- primal slack: 1.0550559882036034e-08
- relative gap: 1.4496264027827932e-07
- residual as dual infeasibility certificate: 0.12711103707156543
- residual as primal infeasibility certificate: None
- s:
- [1.4674968]
- [0.0000000]
- [1.4055364]
- [0.0000000]
- status: unknown
- x:
- [ 7.8671374]
- [ 1.4674968]
- [-0.0000000]
- y:
- [7.8671372]
- z:
- [ 0.0000001]
- [14.0707905]
- [ 0.0000002]
- [ 1.3406728]
-
-13. Add a test to ensure that if we solve the same game twice, we get the
- same answer back.
+5. Add a test to ensure that if we solve the same game twice, we get the
+ same answer back.