return K.linear_subspace().dimension()
-def codim(K):
- r"""
- Compute the codimension of this cone.
-
- The codimension of a cone is the dimension of the space of all
- elements perpendicular to every element of the cone. In other words,
- the codimension is the difference between the dimension of the
- ambient space and the dimension of the cone itself.
-
- OUTPUT:
-
- A nonnegative integer representing the dimension of the space of all
- elements perpendicular to this cone.
-
- .. seealso::
-
- :meth:`dim`, :meth:`lattice_dim`
-
- EXAMPLES:
-
- The codimension of the nonnegative orthant is zero, since the span of
- its generators equals the entire ambient space::
-
- sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)])
- sage: codim(K)
- 0
-
- However, if we remove a ray so that the entire cone is contained
- within the `x-y`-plane, then the resulting cone will have
- codimension one, because the `z`-axis is perpendicular to every
- element of the cone::
-
- sage: K = Cone([(1,0,0), (0,1,0)])
- sage: codim(K)
- 1
-
- If our cone is all of `\mathbb{R}^{2}`, then its codimension is zero::
-
- sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
- sage: codim(K)
- 0
-
- And if the cone is trivial in any space, then its codimension is
- equal to the dimension of the ambient space::
-
- sage: K = Cone([], lattice=ToricLattice(0))
- sage: K.lattice_dim()
- 0
- sage: codim(K)
- 0
-
- sage: K = Cone([(0,)])
- sage: K.lattice_dim()
- 1
- sage: codim(K)
- 1
-
- sage: K = Cone([(0,0)])
- sage: K.lattice_dim()
- 2
- sage: codim(K)
- 2
-
- TESTS:
-
- The codimension of a cone should be an integer between zero and
- the dimension of the ambient space, inclusive::
-
- sage: set_random_seed()
- sage: K = random_cone(max_dim = 8)
- sage: c = codim(K)
- sage: c in ZZ
- True
- sage: (0 <= c) and (c <= K.lattice_dim())
- True
-
- A solid cone should have codimension zero::
-
- sage: set_random_seed()
- sage: K = random_cone(max_dim = 8, solid = True)
- sage: codim(K)
- 0
-
- The codimension of a cone is equal to the lineality of its dual::
-
- sage: set_random_seed()
- sage: K = random_cone(max_dim = 8, solid = True)
- sage: codim(K) == lineality(K.dual())
- True
-
- """
- return (K.lattice_dim() - K.dim())
-
-
def discrete_complementarity_set(K):
r"""
Compute the discrete complementarity set of this cone.