self.one.set_cache(self._cartesian_product_of_elements(ones))
self.rank.set_cache(sum(J.rank() for J in algebras))
+ def product_on_basis(self, i, j):
+ r"""
+ Return the product of the monomials indexed by ``i`` and ``j``.
+
+ This overrides the superclass method because here, both ``i``
+ and ``j`` will be ordered pairs.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+ ....: JordanSpinEJA,
+ ....: RealSymmetricEJA)
+
+ TESTS::
+
+ sage: J1 = RealSymmetricEJA(2,field=QQ,orthonormalize=False)
+ sage: J2 = ComplexHermitianEJA(0,field=QQ,orthonormalize=False)
+ sage: J3 = JordanSpinEJA(2,field=QQ,orthonormalize=False)
+ sage: J = cartesian_product([J1,J2,J3])
+ sage: x = sum(J.gens())
+ sage: x*J.one()
+ e(0, 0) + e(0, 1) + e(0, 2) + e(2, 0) + e(2, 1)
+ sage: x*x
+ 2*e(0, 0) + 2*e(0, 1) + 2*e(0, 2) + 2*e(2, 0) + 2*e(2, 1)
+
+ """
+ factor = i[0]
+ assert(j[0] == i[0])
+ n = self.cartesian_factors()[factor].dimension()
+
+ # The superclass method indexes into a matrix, so we have to
+ # turn the tuples i and j into integers. This is easy enough
+ # given that the first coordinate of i and j corresponds to
+ # the factor, and the second coordinate corresponds to the
+ # index of the generator within that factor. And of course
+ # we should never be multiplying two elements from different
+ # factors.
+ l = n*factor + i[1]
+ m = n*factor + j[1]
+ super().product_on_basis(l, m)
+
def matrix_space(self):
r"""
Return the space that our matrix basis lives in as a Cartesian