]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
Try the span_iso approach to fix my isomorphism tests.
authorMichael Orlitzky <michael@orlitzky.com>
Mon, 1 Jun 2015 05:33:58 +0000 (01:33 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Mon, 1 Jun 2015 05:33:58 +0000 (01:33 -0400)
mjo/cone/cone.py

index 3a1e190cb2ebe41f57810f04726f8123294c55cd..3f5a4fed4e1c49853f00eafcf6084744223ca296 100644 (file)
@@ -7,57 +7,91 @@ addsitedir(abspath('../../'))
 
 from sage.all import *
 
+def rename_lattice(L,s):
+    r"""
+    Change all names of the given lattice to ``s``.
+    """
+    L._name = s
+    L._dual_name = s
+    L._latex_name = s
+    L._latex_dual_name = s
 
-def project_span(K, K2 = None):
+def span_iso(K):
     r"""
-    Return a "copy" of ``K`` embeded in a lower-dimensional space.
+    Return an isomorphism (and its inverse) that will send ``K`` into a
+    lower-dimensional space isomorphic to its span (and back).
+
+    EXAMPLES:
+
+    The inverse composed with the isomorphism should be the identity::
 
-    By default, we will project ``K`` into the subspace spanned by its
-    rays. However, if ``K2`` is not ``None``, we will project into the
-    space spanned by the rays of ``K2`` instead.
+        sage: K = random_cone(max_dim=10)
+        sage: (phi, phi_inv) = span_iso(K)
+        sage: phi_inv(phi(K)) == K
+        True
 
-    EXAMPLES::
+    The image of ``K`` under the isomorphism should have full dimension::
 
-        sage: K = Cone([(1,0,0), (0,1,0)])
-        sage: project_span(K)
-        2-d cone in 2-d lattice N
-        sage: project_span(K).rays()
-        N(1, 0),
-        N(0, 1)
-        in 2-d lattice N
+        sage: K = random_cone(max_dim=10)
+        sage: (phi, phi_inv) = span_iso(K)
+        sage: phi(K).dim() == phi(K).lattice_dim()
+        True
 
-        sage: K = Cone([(1,0,0), (0,1,0)])
-        sage: K2 = Cone([(0,1)])
-        sage: project_span(K, K2).rays()
-        N(1)
-        in 1-d lattice N
+    The isomorphism should be an inner product space isomorphism, and
+    thus it should preserve dual cones (and commute with the "dual"
+    operation). But beware the automatic renaming of the dual lattice.
+    OH AND YOU HAVE TO SORT THE CONES::
+
+        sage: K = random_cone(max_dim=10, strictly_convex=False, solid=True)
+        sage: L = K.lattice()
+        sage: rename_lattice(L, 'L')
+        sage: (phi, phi_inv) = span_iso(K)
+        sage: sorted(phi_inv( phi(K).dual() )) == sorted(K.dual())
+        True
+
+    We may need to isomorph twice to make sure we stop moving down to
+    smaller spaces. (Once you've done this on a cone and its dual, the
+    result should be proper.) OH AND YOU HAVE TO SORT THE CONES::
+
+        sage: K = random_cone(max_dim=10, strictly_convex=False, solid=False)
+        sage: L = K.lattice()
+        sage: rename_lattice(L, 'L')
+        sage: (phi, phi_inv) = span_iso(K)
+        sage: K_S = phi(K)
+        sage: (phi_dual, phi_dual_inv) = span_iso(K_S.dual())
+        sage: J_T = phi_dual(K_S.dual()).dual()
+        sage: phi_inv(phi_dual_inv(J_T)) == K
+        True
 
     """
-    # Allow us to use a second cone to generate the subspace into
-    # which we're "projecting."
-    if K2 is None:
-        K2 = K
+    phi_domain = K.sublattice().vector_space()
+    phi_codo = VectorSpace(phi_domain.base_field(), phi_domain.dimension())
+
+    # S goes from the new space to the cone space.
+    S = linear_transformation(phi_codo, phi_domain, phi_domain.basis())
 
-    # Use these to generate the new cone.
-    cs1 = K.rays().matrix().columns()
+    # phi goes from the cone space to the new space.
+    def phi(J_orig):
+        r"""
+        Takes a cone ``J`` and sends it into the new space.
+        """
+        newrays = map(S.inverse(), J_orig.rays())
+        L = None
+        if len(newrays) == 0:
+            L = ToricLattice(0)
 
-    # And use these to figure out which indices to drop.
-    cs2 = K2.rays().matrix().columns()
+        return Cone(newrays, lattice=L)
 
-    perp_idxs = []
+    def phi_inverse(J_sub):
+        r"""
+        The inverse to phi which goes from the new space to the cone space.
+        """
+        newrays = map(S, J_sub.rays())
+        return Cone(newrays, lattice=K.lattice())
 
-    for idx in range(0, len(cs2)):
-        if cs2[idx].is_zero():
-            perp_idxs.append(idx)
 
-    solid_cols = [ cs1[idx] for idx in range(0,len(cs1))
-                            if not idx in perp_idxs
-                            and not idx >= len(cs2) ]
+    return (phi, phi_inverse)
 
-    m = matrix(solid_cols)
-    L = ToricLattice(len(m.rows()))
-    J = Cone(m.transpose(), lattice=L)
-    return J
 
 
 def discrete_complementarity_set(K):
@@ -204,23 +238,6 @@ def LL(K):
         sage: sum(map(abs, l))
         0
 
-    Try the formula in my paper::
-
-        sage: K = random_cone(max_dim=15, max_rays=25)
-        sage: actual = lyapunov_rank(K)
-        sage: K_S = project_span(K)
-        sage: J_T1 = project_span(K, K_S.dual())
-        sage: J_T2 = project_span(K_S.dual()).dual()
-        sage: J_T2 = Cone(J_T2.rays(), lattice=J_T1.lattice())
-        sage: J_T1 == J_T2
-        True
-        sage: J_T = J_T1
-        sage: l = K.linear_subspace().dimension()
-        sage: codim = K.lattice_dim() - K.dim()
-        sage: expected = lyapunov_rank(J_T) + K.dim()*(l + codim) + codim**2
-        sage: actual == expected
-        True
-
     """
     V = K.lattice().vector_space()
 
@@ -302,6 +319,9 @@ def lyapunov_rank(K):
        cone and Lyapunov-like transformations, Mathematical Programming, 147
        (2014) 155-170.
 
+    .. [Orlitzky/Gowda] M. Orlitzky and M. S. Gowda. The Lyapunov Rank of an
+       Improper Cone. Work in-progress.
+
     .. [Rudolf et al.] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh, Bilinear
        optimality constraints for the cone of positive polynomials,
        Mathematical Programming, Series B, 129 (2011) 5-31.
@@ -390,5 +410,31 @@ def lyapunov_rank(K):
         sage: b == n-1
         False
 
+    In fact [Orlitzky/Gowda]_, no closed convex polyhedral cone can have
+    Lyapunov rank `n-1` in `n` dimensions::
+
+        sage: K = random_cone(max_dim=10)
+        sage: b = lyapunov_rank(K)
+        sage: n = K.lattice_dim()
+        sage: b == n-1
+        False
+
+    The calculation of the Lyapunov rank of an improper cone can be
+    reduced to that of a proper cone [Orlitzky/Gowda]_::
+
+        sage: K = random_cone(max_dim=15, solid=False, strictly_convex=False)
+        sage: actual = lyapunov_rank(K)
+        sage: (phi1, phi1_inv) = span_iso(K)
+        sage: K_S = phi1(K)
+        sage: (phi2, phi2_inv) = span_iso(K_S.dual())
+        sage: J_T = phi2(K_S.dual()).dual()
+        sage: phi1_inv(phi2_inv(J_T)) == K
+        True
+        sage: l = K.linear_subspace().dimension()
+        sage: codim = K.lattice_dim() - K.dim()
+        sage: expected = lyapunov_rank(J_T) + K.dim()*(l + codim) + codim**2
+        sage: actual == expected
+        True
+
     """
     return len(LL(K))